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Tithinirṇaya: A Calendrical Text of the Mādhva
Tradition for Religious Observations

Nagakiran Yelluru𝑎 and G. Sreeram𝑎 and
Venketeswara R. Pai𝑏 and Aditya Kolachana𝑎

𝑎Indian Institute of Technology, Madras
𝑏Indian Institute of Science Education and Research, Pune

1 INTRODUCTION

THE TITHINIRṆAYA (DETERMINATION OF THE TITHI) is an astronomical karaṇa text.1
Its epoch is April 3, 1308 CE. It consists of twenty-eight verses that give the

procedure to compute the calendrical element known as tithi (lunar day),2 at
sunrise on a desired day, for an observer approximately located at a latitude of
12.78∘.3 The text follows the Haridatta’s parahita4 corrected Āryabhaṭa system,
which is evident from the dhruvas,5 (22) and (33), of the Moon and Moon’s apo-
gee, respectively, at the epoch. The primary application of this text, as evident
from its invocatory and concluding verses, is to precisely determine the days, de-
voted to lord Viṣṇu, on which a fasting ritual is to be observed. The text appears
to be intended for the followers of the Mādhva tradition,6 as evidenced by its

1 A genre of astronomical texts which
chooses a recent epoch and dictates a
simpler procedure in computing the
aspects of astronomy, i.e., calendrical
elements, eclipses, etc., without presenting
the rationale involved in the computations.
2 A time unit in which the longitudinal sep-
aration between the Moon and the Sun in-
creases by 12∘.
3 The latitude corresponds to the location
of the author, proposed to be Śrī Trivikrama-
paṇḍitācārya in Section 1.3.
4 A system proposed to correct the longit-
udes of the planets, computed from Ārya-

bhaṭīya astronomical parameters, post śaka
444 or kali year 3623.
5 The fixed mean longitudes proposed by
the author at the epoch.
6 The followers of Śrī Madhvācārya, the
chief proponent of Dvaita school of Vedānta
philosophy. It may be noted that currently,
within the Mādhva tradition, only the
maṭhas (religious establishments in the
lineage) like Sode, Kṛṣṇāpura, Śīrūru,
Kāṇiyūru, and Bhīmanakaṭṭe subscribe
to the Tithinirṇaya method of calendrical
computations.
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usage exclusively within that community today.7
The first verse of the text is an invocation to Viṣṇu, which lays out the purpose

of the text. Verses 2–24 prescribe the procedure to compute the tithi by finding
the true longitudes of the Sun and the Moon at true sunrise. Verses 25–28 discuss
rules with regards to the observation and breaking of the fast on various days.

1.1 PRIOR PUBLICATIONS AND AVAILABILITY OF MANUSCRIPTS OF
TITHINIRṆAYA AND ITS COMMENTARY

A perusal of manuscript catalogs and publication database reveals that there are
several texts named Tithinirṇaya.8 It appears to be a popular name adopted by
scholars who wish to discuss the vratas (holy practices) associated with the tithis
across different lunar months in a year. Though the Tithinirṇaya, which is the sub-
ject of this work also discusses, in brief, the vratas like ekādaśī and Viṣṇupañcaka,
a large portion of the work is dedicated to the computation of tithi, which sets it
apart from the other published Tithinirṇayas.9

The current Tithinirṇaya was first brought to light in 1974 by Padmaśrī10 Ban-
nañje Govindācārya in his critical edition of the Sarvamūlagranthas.11

He records12 that the manuscripts of the text were available in various Mād-
hva maṭhas (religious establishments in the lineage),13 and his edition was based

7 Usually, the Mādhvas fast two days a
month, corresponding to the ekādaśī tithis.
Optionally, they may also fast on the days
corresponding to the amāvāsyā and pūrṇimā
tithis, as well as the days corresponding to
the Śravaṇā-nakṣatra. Thus, in all, they may
fast from two to five days in a lunar month.
8 See pages 170–171 in volume 8 of
New Catalogus Catalogorum at https:
//vmlt.in/ncc/8?page=90, and manu-
scripts of Allahabad Museum at https:
//indianculture.gov.in/manuscripts?
search_api_fulltext=tithinirnaya&.
9 See Śāstri (1940), and Ś. R. Jhā (1983).
Even within the Mādhva tradition, there
appears to be another text named Tithi-
nirṇaya, attributed to Ānandatīrthācārya
(son of Tāmraparṇī Viṭṭalācārya), which fo-
cuses solely on the performance of the vratas
and does not contain astronomy.
10 A highly regarded civilian honour of the
Republic of India.
11 The Sarvamūlagranthas generally refer to
the collection of 37 works attributed to
Śrī Madhvācārya. This critical edition of

Bannañje (1974b) contains 39 works, includ-
ing Tithinirṇaya. Prior to the publication of
the Tithinirṇaya as part of this collection in
1974, the Mādhva maṭhas in Udupi used to
construct calendars as per the Āryabhaṭīya
Vākyakaraṇa (this is the name given in the
pañcāṅga. The calender makers have con-
firmed this to be the Karaṇaprakāśa). Follow-
ing Bannañje Govindācārya’s attribution of
the Tithinirṇaya to Śrī Madhvācārya, some
of the maṭhas adopted this text for their
calendrical computations. This adoption
was perhaps made easier by the fact that
the Tithinirṇaya produced the same results
as the Āryabhaṭīya Vākyakaraṇa.
12 Bannañje (1974b: 175) says ‘सित त ु
बहुष ु थलेवयायमठेष ु चाय हतिलिखतािन
पुतकायपुलधािन।’
13 Śrī Madhvācārya anointed nine disciples
as his successors, from which nine maṭhas
got established. Eight out of the nine,
Palimāru, Adamāru, Kṛṣṇāpura, Puttige,
Śīrūru, Sode, Kāṇiyūru, and Pejāvara, based
in Udupi are known as aṣṭamaṭhas (eight re-
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52 TITHINIRṆAYA: A CALENDRICAL TEXT

on the manuscript found in the archives of the Pejāvara maṭha, Udupi.14 Having
said that, while providing the Sanskrit commentary and working out an example,
he also mentions the scribal errors found in other available manuscripts without
revealing their location. The scribal errors or the alternate readings captured by
Bannañje Govindācārya are provided in the respective sections.

A Kannada translation of the text, which appears to have been at least partly
inspired by Bannañje Govindācārya’s Sanskrit edition, was carried out by Vyāsa-
dāsa (2007). Here too, we find mention of the availability of the manuscripts in
Pejāvara, Sode and other maṭhas.15 This edition also contains a brief commentary
and works out an example.

Unfortunately, neither of these publications provides cataloging details per-
taining to the manuscripts. We were unable to trace them in the archives of Pe-
jāvara, Sode, Kṛṣṇāpura, and Kāṇiyūru maṭhas in Udupi, Subrahmaṇya maṭha
in Subrahmaṇya village, the Vyāsa Madhva Sevā Pratiṣṭhāna in Bangalore, and
Viśva Madhva Mahā Pariṣad of Uttarādi maṭha in Bangalore. Some of the other
maṭhas either do not maintain archives, or we were unable to access them.

However, we have been able to access a facsimile of a manuscript, which ap-
pears to be from a private collection, and contains a commentary by Madhu-
sūdana Bhikṣu,16 a seventeenth or eighteenth century monk.17 A preliminary
analysis reveals the manuscript to be incomplete, with missing verses and omis-
sions by the scribe in the commentary. Further, the last four verses 25–28 of
Tithinirṇaya are not discussed in this commentary; instead, the commentator ex-
plains the procedure to obtain the other calendrical elements like nakṣatra, yoga,
and karaṇa.

Moreover, the commentator appears to adopt a novel approach to interpret-
ing the text and explains that he has made necessary emendations due to the
errors that have crept in in the available manuscripts and their scarcity during

ligious establishments). The ninth is the
source of maṭhas like Uttarādi, Vyāsarāja,
and Rāghavendra. These maṭhas are prom-
inent in the lineage.
14 Bannañje (1974b: 175) says ‘गथोऽयमके-
िमन म्लूकोशावलबने िलिखते शीपजेावरमठीय े पाची-
नकोशे उपलधः।’
15 Nāgabhūṣaṇa Rao, in the foreword, says
‘ಇದರ ಹಸತ್æÎತ ಪರ್ÚಗಳĖ éರ್ೕāೕ�ಾವರಮಠ, éರ್ೕčೂೕþ-
 ಾÜ�ಾಜಮಠ ಮತುತ್ ಇತರ ïಲವĒ ಮಠಗಳæಲ್ಯೂ
ಉಪಲಬಧ್èþ.’ See Vyāsadāsa (2007: iii).
16 Rāmanāthācārya (1996) is the first
to report the details of this manuscript
in the January edition of the Tatvavāda.

From Rāmanāthācārya (1996), Viṣṇudāsa
(2014: 144), and Bhikṣu (n.d.), we learn
that Madhusūdana Bhikṣu was a disciple
of Śrī Satyapūrṇatīrtha, and Śrī Satya-
vijayatīrtha, the 22nd and 23rd pontiffs of
Uttarādi-maṭha, respectively.
17 Rāmanāthācārya (1996: 37) places him
in the seventeenth century. B. N. K.
Sharma (1981: 209) places Madhusūdana
Bhikṣu’s preceptors, Śrī Satyapūrṇatīrtha,
and Śrī Satyavijayatīrtha, in the eighteenth
century, while Dasgupta (1949: 56) places
them in the seventeenth century.
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his times.18 Hence, we refer to this commentary only sparingly in our discus-
sion, wherever it aligns with our understanding of the text.

Therefore, since the source manuscripts of the Tithinirṇaya are unavailable,
this work derives its verses from the main reading found in the published works
of Bannañje (1974b) and Vyāsadāsa (2007).

1.2 DATE OF COMPOSITION
The second verse of the Tithinirṇaya encodes the epoch of the text in the phrase
bhūśrībhinnākicintya, employing the kaṭapayādi system. Decoded, this phrase cor-
responds to the number 1610424, which gives the kali-ahargaṇa or, the number of
days elapsed since the beginning of the kaliyuga. This day corresponds to the be-
ginning of the true sidereal year (Meṣa-saṅkrānti), when 4409 years have elapsed
in the kaliyuga calendar or April 3, 1308 in the Gregorian calendar. This would
also correspond to Caitra-śukla-caturthī in the śaka 1230 (elapsed), named Kīlaka.

Based on the nature of the text and epoch chosen, the astronomical texts are
classified into siddhānta, mahātantra, tantra, and karaṇa.19 As Tithinirṇaya employs
a relatively recent epoch and outlines a simplified procedure to compute the tithi
without presenting the complete theoretical framework, it belongs to the karaṇa
category.

1.3 AUTHORSHIP
The Tithinirṇaya’s source text lacks any information about its authorship. Nev-
ertheless, Bhikṣu (n.d.), Bannañje (1974b) and Vyāsadāsa (2007) assert the au-
thor to be Śrī Madhvācārya. However, many authoritative texts within the Mād-
hva tradition do not record Tithinirṇaya among the works authored by Śrī Mad-
hvācārya. Certain earlier works by eminent saints also contain statements that
would contradict such an attribution to Śrī Madhvācārya. Alternatively, some
scholars propose the author to be Śrī Trivikramapaṇḍitācārya, a direct disciple
of Śrī Madhvācārya. In the subsequent discussion, we present these varying per-
spectives chronologically.

The earliest texts within the Mādhva tradition do not include the Tithinirṇaya
among the works attributed to Śrī Madhvācārya. The Sumadhvavijaya, recognized
as an authentic life sketch of Śrī Madhvācārya, authored by his near contempor-
ary Śrī Nārāyaṇapaṇḍitācārya in late thirteenth century, while discussing the
works of Śrī Madhvācārya does not mention the Tithinirṇaya or any other work

18 It is worth noting that there was a
scarcity of Tithinirṇaya manuscripts dur-
ing Madhusūdana Bhikṣu’s period (seven-
teenth or eighteenth century CE), whereas it
was otherwise during the time of Bannañje

(1974b).
19 See Vākyakaraṇa, Sastri and Sarma
(1962: 7), which states तत िसधात-महात-
त-करणभदेने गिणतकधय चतिुव र्धवम।्
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54 TITHINIRṆAYA: A CALENDRICAL TEXT

of that genre.20 Furthermore, subsequent commentaries on Sumadhvavijaya also
do not include Tithinirṇaya in their enumeration of Śrī Madhvācārya’s works. In
other compositions providing enumerations of Śrī Madhvācārya’s works, such
as Granthamālikā by Śrī Vyāsarājatīrtha (1478–1539), Pūrṇaprajñagranthamālikā by
Śrī Yadupatyācārya (1580–1630), and another work of the same name by Bid-
arahaḷḷi Śrī Śrīnivāsācārya (1600–1660), the Tithinirṇaya is neither mentioned by
name nor categorized by genre.21

Further, Śrī Vādirājatīrtha (1480–1600), the twentieth pontiff of the Sode
maṭha, in his Ekādaśī-nirṇaya, categorically states that Śrī Madhvācārya did
not author any work dealing with the classification of viddhaikādaśī . Since
this classification is dealt with in verse 25 of Tithinirṇaya,22 it can be inferred
from Śrī Vādirājatīrtha’s statement23 that Śrī Madhvācārya did not author the
Tithinirṇaya.

Moreover, many scholars of the tradition, starting from Śrī Vādirājatīrtha,
attribute the same verse to Śrī Trivikramapaṇḍitācārya.24 Śrī Tāmraparṇī
Śrīnivāsācārya, in his commentary of Śrī Madhvācārya’s Kṛṣṇāmṛtamahārṇava,
mentions the source of this verse to be Śrī Trivikramapaṇḍitācārya’s Tithinirṇaya
and also states Śrī Vādirājatīrtha’s Ekādaśī-nirṇaya to be a commentary of this
Tithinirṇaya.25 Going by these statements of considerable authority, it seems
that the author of the Tithinirṇaya is likely to be Śrī Trivikramapaṇḍitācārya.

On the other hand, the attribution of the work to Śrī Madhvācārya is fairly
recent. The earliest such attribution is made by Madhusūdana Bhikṣu (c. sev-
enteenth century CE), in his commentary of Tithinirṇaya,26 where he states that
the work was composed by Śrī Madhvācārya before he became a monk.27 Fur-
ther, Bannañje (1974b), independently ascribes the text to Śrī Madhvācārya. He
refers to a statement28 from an unspecified ancient text on tithi available in Pal-
imāru maṭha, which attributes the Tithinirṇaya to an ācārya. Interpreting ācārya as
20 See Sumadhvavijaya verses XV.73–90,
Shyamachar and Pandurangi (2001: 403–
413).
21 See Shyamachar and Pandurangi
(2001: 495–496).
22 See Section 16.
23 See Ekādaśī-nirṇaya verse 8(a,b), B. P. N.
Rao (1994: 26), which states ̠श؛ायोपिदशत् ग्र-
Ԯे न बबԺ सदाग्रणीः ।
24 See Ekādaśī-nirṇaya verse 30, B. P. N.
Rao (1994: 34), Smṛtimuktāvalī, Giri Ācārya
(2016: 147–148), Karmasiddhānta, Rāmanāth-
ācārya (2013: 93).
25 See Karaṇam and Vādirājācārya
(2002: 183).
26 See Rāmanāthācārya (1996) and Bhikṣu
(n.d.) where, in the introduction, the colo-

phon states: आनदतीथ र्मखुािनसतृितिथिनण र्यः।
तय यायां यथाबोधं किरये तृकपाबलात।् and in
the end, colophon states: इित शीमदानदतीथा र्-
य र्मखुिनसतृः ितिथिनण र्यनामा यः तय याया कृता
मया। The name Ānandatīrtha, mentioned
here, was given to Śrī Madhvācārya by
Acyutaprekṣatīrtha when he was crowned
as the ruler of the Empire of Vedānta. See Su-
madhvavijaya verses V.1–2, Shyamachar and
Pandurangi (2000: 201–202).
27 See folio 1, where Bhikṣu (n.d.) men-
tions …सयासगहणापवू र्मवे ितिथिनण र्यायं गथं
कत ुर्कामाः…।
28 Bannañje (1974b: 175) mentions आचाय͓أ-
थैव ित̠थिनқर्येऽ̠भिहत̠मӀाय͐णैव िविनқर्यः ।
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Śrī Madhvācārya and considering the prevalence of the manuscripts of this text
primarily in the Mādhva maṭhas, Govindācārya attributes the work to Śrī Mad-
hvācārya. He also claims that it was composed when Śrī Madhvācārya was
around 70 years old, which contradicts the statement of Madhusūdana Bhikṣu.29

Further, Vyāsadāsa (2007), simply accepts the claim made by Govindācārya and
attributes the text to Śrī Madhvācārya.

In conclusion, considering the absence of the Tithinirṇaya among the works at-
tributed to Śrī Madhvācārya by some of the earliest and most prominent scholars
of the Mādhva tradition, we find it difficult to accept the attribution of this text to
him by the recent scholars. In light of Śrī Vādirājatīrtha’s statement that Śrī Mad-
hvācārya never composed any work on the classification of viddhaikādaśī , the
presence of verse 25 in the Tithinirṇaya, which deals with this very subject mat-
ter, further reduces the likelihood of his authorship of this text. On the other
hand, the attribution of this very verse, by several scholars, to Śrī Trivikrama-
paṇḍitācārya, and the proximity of his home town Kāvu (𝜙 = 12.53∘)30 to the
latitude (𝜙 = 12.78∘) employed for cara computations in this text,31 lead us to be-
lieve that Śrī Trivikramapaṇḍitācārya may perhaps be a more probable candidate
for the authorship of the Tithinirṇaya.

1.4 CONTENTS OF THE TEXT
In this work, the verses of Tithinirṇaya are grouped across different sections based
on their content, as shown in Table 1. Section 2 deals with the invocation, Sec-
tions 3–15 explain the procedure to compute tithi, and Sections 16–19 give the
rules for observing the fast.

1.5 OVERVIEW OF THE PROCEDURE TO FIND TITHI
The Indian calendar, known as pañcāṅga (five limbs), primarily comprises five
elements: tithi, vāra, nakṣatra, yoga, and karaṇa.32 The Tithinirṇaya deals with the
procedure to compute a tithi, which provides the time for undertaking Vedic
rituals, ekādaśī fasts, etc. The computation of the tithi at any instant depends
on the true longitudes of the Sun and the Moon at that instant. Generally, in
calendar making, computations are carried out for the instant of sunrise at the
observer’s location. Thus, to determine the tithi at sunrise, the true longitudes of
the Sun (𝜃𝑡𝑠) and the Moon (𝜃𝑡𝑚) have to be computed for that instant. To com-
pute these, the general procedure laid out in the astronomical texts involves first

29 According the Mādhva tradition,
Śrī Madhvācārya was ordained as a monk
at a young age.
30 B. N. K. Sharma (1981: 213) mentions
the ancestral house of Śrī Trivikrama-

paṇḍitācārya to be at Kāvu, Kāsargoḍ,
Kerala.
31 See Section 14.1.2.
32 See S. B. Rao (2000: 64–70) for more
details.
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56 TITHINIRṆAYA: A CALENDRICAL TEXT

Section Verses Content

2 1 Invocation

Procedure to compute tithi

3 2–3 Mean longitude of the Sun at mean sunrise at Laṅkā
4 4 Mean longitude of the Moon at mean sunrise at Laṅkā
5 5 Mean longitude of the Moon’s apogee at mean sunrise at Laṅkā
6 6–7 Deśāntara correction: to obtain mean longitudes at mean sunrise

at the observer’s meridian
7 8–9 Sun’s apogee and bhujāntara correction: to obtain mean longit-

udes at true sunrise at the observer’s meridian
8 10–12 Rsine values of 24 arcs
9 13 Interpolation formula for obtaining the desired Rsine
10 14 Quadrants of Ecliptic and bhuja
11 15 Manda correction: to obtain true longitudes at true sunrise at the

observer’s meridian
12 16–18 Trepidation of the Equinox
14a 19–22 Caradala correction: for an observer’s latitude of 12.78∘

15 23–24 Elapsed tithi and the elapsed time in the current tithi

Rules for observing the fast

16 25 Determining viddhaikādaśī
17 26 Fasting days of Viṣṇupañcaka vrata
18 27 Reaping the full benefits of a fast
19 28 Saṅkoca-dvādaśī or Sādhana-dvādaśī

a Section 13 discusses ignoring the udayāntara correction, which accounts for the
obliquity of the ecliptic, in Tithinirṇaya.

Table 1: Contents of Tithinirṇaya.

computing the mean longitudes of the Sun (𝜃∘𝑠) and the Moon (𝜃∘𝑚) at the instant
(𝑡∘) of mean sunrise for an observer at Laṅkā,33 followed by a series of corrections
i.e., deśāntara, bhujāntara, manda, udayāntara and cara. The algorithm depicting the
series of corrections, along with brief rationales, is shown in Figure 1.34

33 Laṅkā is the point of intersection of
the prime meridian (a meridian passing
through Ujjayinī, Svāmīnagara, etc.) and
the equator.

34 The notations employed in this work and
their interpretations are summarized in Sec-
tion 1.6.3.

HISTORY OF SCIENCE IN SOUTH ASIA 13 (2025) 50–152



YELLURU, SREERAM, PAI AND KOLACHANA 57

𝜃∘𝑝 Mean longitude of 𝑝 at the instant (𝑡∘)
of mean sunrise at 𝐿

𝜃𝑑𝑝 Mean longitude of 𝑝 at the instant (𝑡𝑑)
of mean sunrise at 𝐿′

deśāntara
∓ |Δ𝑑

𝑝|
corrects for the time difference
(𝑡𝑑 ∼ 𝑡∘) between the instants
of mean sunrise at 𝐿′ and 𝐿

𝑑𝜃𝑏𝑝 Mean longitude of 𝑝 at the instant (𝑡𝑏)
of true sunrise at 𝐿′

bhujāntara
∓ |𝑑Δ𝑏

𝑝|
corrects for the time difference
(𝑡𝑏 ∼ 𝑡𝑑) between the instants
of true and mean sunrise at 𝐿′

𝑑𝜃𝑚𝑝
True longitude of 𝑝 at mean
sunrise instant (𝑡𝑑) at 𝐿′

manda
∓ |𝑑Δ𝑚

𝑝 |

𝑏𝜃𝑚𝑝 True longitude of 𝑝 at the instant (𝑡𝑏)
of true sunrise at 𝐿′

manda
∓ |𝑏Δ𝑚

𝑝 |
corrects for the eccentricity of
the orbit (observer not at the
center of the orbit)

𝑚𝜃𝑏𝑝 ≡

bhujāntara
∓ |𝑚Δ𝑏

𝑝|

𝜃𝑢𝑝
True longitude of 𝑝 at the instant (𝑡𝑢)
of true sunrise at 𝐿′ considering obliquity

udayāntara
∓ |Δ𝑢

𝑝|

corrects for the time difference
(𝑡𝑢 ∼ 𝑡𝑏) between the instants
of true sunrise at 𝐿′ with and
without considering the
obliquity of the ecliptic

𝜃𝑡𝑝
True longitude of 𝑝 at the instant (𝑡𝑐𝑎)
of true sunrise at 𝑄

cara
∓ |Δ𝑐𝑎

𝑝 |
corrects for time difference
(𝑡𝑐𝑎 ∼ 𝑡𝑢) between the instants
of true sunrise at 𝑄 and 𝐿′

𝐿 –Point of intersection of prime me-
ridian and equator (Laṅkā)

𝐿′ –Point of intersection of ob-
server’s meridian and equator

𝑄 –Location of the observer
–Sequence in Tithinirṇaya
–Sequence observed in other as-
tronomical texts

Figure 1: A diagram showing the sequence of corrections applied for obtaining
the true longitude (𝜃𝑡𝑝) of a celestial body (𝑝). Here, the subscript 𝑝 can be re-
placed with 𝑠 and 𝑚 for the Sun and the Moon respectively.

To appreciate the physical significance of these corrections, let us consider
Figure 2, which depicts a spherical Earth, its poles, the prime meridian,35 and

35 See Karaṇaratna verse I.30, Shukla
(1979: 21–22), which states that the prime

meridian is the meridian passing through
Ujjayinī, Svāmīnagara, etc.
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Figure 2: A diagram showing the locations, 𝐿, 𝐿′ and 𝑄, on the spherical Earth
corresponding to which at their (mean or true) sunrise, the longitudes of the Sun
and the Moon are computed.

the observer’s meridian. Let 𝐿 be the point of intersection of the prime meridian
and equator, denominated as Laṅkā in Indian astronomical tradition. Let the
observer be located at 𝑄 at a latitude 𝑄𝐿′ = 𝜙, on a meridian at a distance of
𝐿𝐿′ = Δ𝑑 yojanas36 (along the equator, east or west) from the prime meridian.
The sequence of corrections in Figure 1 takes us along the path 𝐿 → 𝐿′ → 𝑄
highlighted in Figure 2, resulting in the conversion of mean longitudes at mean
sunrise at 𝐿 into true longitudes at true sunrise at 𝑄.

To elaborate, the procedure commences with computing the mean longitudes
of the Sun (𝜃∘𝑠) and the Moon (𝜃∘𝑚) or, in general, 𝜃∘𝑝, at the instant (𝑡∘) of mean
sunrise at a reference location, typically taken to be Laṅkā (𝐿) in Indian astro-
nomy. Applying the deśāntara correction (∓ |Δ𝑑

𝑝|) accounts for the time differ-
ence (𝑡𝑑 ∼ 𝑡∘) between the instants of mean sunrise at 𝐿′ and 𝐿, thus obtaining
their corresponding mean longitudes (𝜃𝑑𝑝) at the instant (𝑡𝑑) of mean sunrise at
𝐿′. Next, the bhujāntara and manda corrections can be applied interchangeably.
The manda correction (equation of center) considers the effect of the observer
being away from the center of the orbit, and bhujāntara correction accounts for

36 A unit of length used by Indian astronomers.
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Description Notation Value

Number of revolutions of the Sun 𝑅𝑠 4320000
Number of revolutions of the Moon 𝑅𝑚 57753336
Number of revolutions of the Moon’s apogee 𝑅𝑚_𝑎𝑝 488219
Number of civil days 𝐷𝑐 1577917500
Position of the Sun at kalyādi 𝜃𝑘𝑠 0;0,0,0a

Position of the Moon at kalyādi 𝜃𝑘𝑚 0;0,0,0
Position of the Moon’s apogee at kalyādi 𝜃𝑘𝑚_𝑎𝑝 3;0,0,0

a indicates 0 rāśis; 0 degrees, 0 minutes, 0 seconds

Table 2: Āryabhaṭīya astronomical parameters for a mahāyuga (4320000 years)

the time difference (𝑡𝑏 ∼ 𝑡𝑑) between the instants of true and mean sunrise at
𝐿′. Thus, applying bhujāntara (∓ |𝑑Δ𝑏

𝑝|) [or manda (∓ |𝑑Δ𝑚
𝑝 |)] correction, their cor-

responding mean (𝑑𝜃𝑏𝑝) [or true (𝑑𝜃𝑚𝑝 )] longitudes are obtained at the instant (𝑡𝑏
[or 𝑡𝑑]) of true [or mean] sunrise at 𝐿′. Subsequently, applying manda (∓ |𝑏Δ𝑚

𝑝 |)
[or bhujāntara (∓ |𝑚Δ𝑏

𝑝|)] correction, their corresponding true longitudes (𝑏𝜃𝑚𝑝 [or
𝑚𝜃𝑏𝑝]) are obtained at the instant (𝑡𝑏) of true sunrise at 𝐿′. Up to this, the instant
of (mean or true) sunrise, at 𝐿 or 𝐿′, is based on the assumption that the ecliptic
is aligned with the celestial equator. i.e., obliquity 𝜖 = 0∘. Astronomers start-
ing from Śrīpati (eleventh century CE) apply the udayāntara correction (∓ |Δ𝑢

𝑝|)
to account for the time difference (𝑡𝑢 ∼ 𝑡𝑏) between the instants of true sunrise
at 𝐿′ with and without considering the obliquity (𝜖 = 24∘) of the ecliptic, thus
obtaining the true longitudes (𝜃𝑢𝑝) at the instant (𝑡𝑢) of the true sunrise at 𝐿′.
Finally, applying the cara correction (∓ |Δ𝑐𝑎

𝑝 |), which accounts for the time differ-
ence (𝑡𝑐𝑎 ∼ 𝑡𝑢) between the instants of true sunrise at 𝑄 and 𝐿′, gives the true
longitudes of the Sun (𝜃𝑡𝑠) and the Moon (𝜃𝑡𝑚) at the instant (𝑡𝑐𝑎) of true sunrise
at the observer’s location (𝑄). The corrections denoted by bold arrows in Fig-
ure 1 indicate the sequence followed by Tithinirṇaya, whereas the dotted arrows
indicate the alternate (or extra) sequence (or correction) proposed by other as-
tronomers like Lalla, Nīlakaṇṭha Somayājin, and so on.37 The alternate sequence
is provided to compare the Tithinirṇaya sequence with the interpretations of Ban-
nañje (1974b), and Vyāsadāsa (2007), as discussed in Section 7.1.5.

The Sections 3, 4 and 5 describe the procedure to compute the mean posi-
tions of the Sun, Moon, and Moon’s apogee, respectively, at the instant (𝑡∘) of
mean sunrise at Laṅkā (𝐿). The explanations therein utilize the astronomical
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parameters for a mahāyuga prescribed by Āryabhaṭa38 as given in Table 2.

1.6 METHODOLOGY AND CONVENTIONS
The methodology employed in translating the verses and the conventions ad-
hered to in elucidating the content is outlined in the following discussion.

1.6.1 Translation
The discussion of the contents within Tithinirṇaya follows a structured approach.
Initially, each relevant verse is presented in Devanagari and then transliterated
into Roman script. Subsequently, an English translation is provided, with a focus
on preserving the author’s voice and style to the best extent possible. To enhance
the correct understanding of the verses, certain words are inserted within ‘[ ].’
Additionally, relevant phrases of the verse, such as word numerals,39 that appear
in translation, following their connotation, are enclosed in ‘( ).’ The scribal errors
and alternate readings of the verses, indicated by Bannañje (1974b) and Bhikṣu
(n.d.), are given in the footnotes for ready reference.

1.6.2 Explanation
To help better understand the mathematical import of the verses, the mathem-
atical expressions articulated therein are first given in Sanskrit, followed by the
corresponding modern mathematical notation. The geometrical and mathemat-
ical rationales of these expressions are explained through appropriate diagrams
and derivations. References to primary and secondary texts employed in our ana-
lysis are provided in the footnotes. For consistency, we have employed Sanskrit
technical terms throughout the text and explained their meaning in the glossary.
All the kaṭapayādi phrases, employed in the Tithinirṇaya are found to denote the at-
tributes of Viṣṇu. The phrases, their corresponding numbers, and their meaning
are summarized in Appendix B.

1.6.3 Symbols
In this work, longitudes and corrections are denoted by 𝜃, and Δ respectively.
Subscripts ‘𝑠’ and ‘𝑚’ denote values for the Sun and the Moon, respectively, such
as 𝜃𝑠 or 𝜃𝑚 for longitudes and Δ𝑠 or Δ𝑚 for corrections. The uncorrected mean
longitudes of the Sun and the Moon are denoted by 𝜃∘𝑠 and 𝜃∘𝑚, while the final
corrected true longitudes are represented by 𝜃𝑡𝑠 and 𝜃𝑡𝑚, respectively.
37 See Śiṣyadhīvṛddhidatantra, Chatterjee
(1981: 37–39), and Tantrasaṅgraha, Ramasu-
bramanian and Sriram (2011: 80–81).
38 See Āryabhaṭīya verses 3–4 in the Gītikā
chapter, and verse 5 in the Kālakriyā chapter,

Shukla and Sarma (1976: 6–7,91).
39 The numerals are encoded into words us-
ing kaṭapayādi system in Tithinirṇaya. See
Ramasubramanian and Sriram (2011: 440),
for more information on kaṭapayādi system.
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Superscripts 𝑑, 𝑏, 𝑚, 𝑢, and 𝑐𝑎 signify corrections deśāntara, bhujāntara, manda,
udayāntara, and cara, respectively. Post-superscripts and pre-superscripts indic-
ate the current and previous corrections respectively. For instance, 𝑑𝜃𝑚𝑠 signifies
the Sun’s longitude resulting from a manda correction (𝑑Δ𝑚

𝑠 ) performed after a
deśāntara correction. Similarly, 𝑏𝜃𝑚𝑠 denotes the Sun’s longitude resulting from a
manda correction (𝑏Δ𝑚

𝑠 ) after a bhujāntara correction. The notations used in this
work adhere to the conventions outlined in Appendix A.

1.6.4 Projections employed in figures
For ease of representation, diagrams featuring geometrical entities within a
sphere, such as Figures 2, 3a, 4b, 6b, 10, 18 and 19, incorporate oblique and
orthographic projections. In Figure 2, for instance, the planes representing
the equator and the latitudinal circle are depicted using oblique projections.
Simultaneously, the Earth’s axis, symbolized by the line connecting the north
pole (𝑃𝑁) and the south pole (𝑃𝑆), is presented through an orthographic
projection. This approach is consistent across all other figures.

2 INVOCATION

िवؑुं िव؀े؀रं नӈा तदपुोषणशुद्धये । 40

मूलग्रԮानुसारेण िक्रयते ित̠थिनणर्यः ॥ १ ॥ ॥ अनुटभु ॥् 
viṣṇuṃ viśveśvaraṃ natvā tadupoṣaṇaśuddhaye |
mūlagranthānusāreṇa kriyate tithinirṇayaḥ || 1 || || anuṣṭubh ||
Having venerated Viṣṇu, the lord of the universe (viśveśvara), for the
correctness of fast [observed on ekādaśī , Viṣṇupañcaka, etc.,] for Him
(Viṣṇu), [the text] Tithinirṇaya is composed [by me (author)] based
upon the [astronomical and socio-religious] source text.

The invocation is an age-old Indian practice where the author seeks the bless-
ings of their favorite deity (iṣṭadevatā) to remove the intermittent hindrances until
the completion of the work. The author commences his work, titled ‘Tithinirṇaya,’
with the above invocatory verse, venerating Viṣṇu, the lord of the universe. He
states that the purpose of the text is to bring perfection to the practice of ob-
serving fasts, like ekādaśī , and Viṣṇupañcaka, which are performed for the sake of
Viṣṇu. Further, without giving any details, the author states that this Tithinirṇaya
is based upon an (unnamed) source text.

40 Bhikṣu (n.d.) notes an alternate read-
ing for िववेवरम a्s सवेवरम ्, meaning the lord
of all, including Mahālakṣmī, Brahma, etc.

He also reads तदुपोषणशुधये as तदुपोषणिसधय,े
which in turn means the fast pertaining to
Viṣṇu that leads to salvation.
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2.1 EXPLANATION
2.1.1 Purpose of the work

The followers of Viṣṇu consider ekādaśī and Viṣṇupañcaka to be highly significant
or fasting rituals (vratas). Śrī Madhvācārya, in his Kṛṣṇāmṛtamahārṇava,41 states
the importance of compulsory fast on the ekādaśī . Similarly, Śrī Kṛṣṇācārya, in
his Smṛtimuktāvalī,42 states the importance of observing the Viṣṇupañcaka, an op-
tional vrata observed to cleanse oneself off major transgressions. Given the im-
portance of these two vratas, it is pertinent that they are followed without lapse.
For this, Tithinirṇaya lays down the rules to determine the days on which the
vratas shall be observed. It is worth noting here that these rules are discussed
only in the last 4 verses (25–28), while verses 2–24 deal with the computation of
tithi, as it serves as a prerequisite for the application of the rules.

2.1.2 Source text upon which the Tithinirṇaya is based
The author, in the above verse, employs the phrase ‘mūlagranthānusāreṇa’ to in-
dicate that the Tithinirṇaya is based upon a source text, without providing any
specifics.

Bhikṣu (n.d.) interprets mūla-grantha as the sole grace of Nārāyaṇa,43

whereas Vyāsadāsa (2007: xii) interprets it as the texts that are in congruence
with Vedavyāsa’s thoughts.44 Their interpretation of this phrase likely flows
from their attribution of the authorship of the Tithinirṇaya to Śrī Madhvācārya,
who, as per legend, obtained his knowledge from Vedavyāsa. However,
Madhusūdana Bhikṣu also quotes verses from the texts like Varāha-purāṇa,
Kṛṣṇāmṛtamahārṇava, Sūryasiddhānta, Vākyakaraṇa, and Karaṇaprakāśa to support
his interpretation of Tithinirṇaya.

In our study, we observed similarities in the verses, expressions, astronomical
parameters, and procedures between the Tithinirṇaya and earlier astronomical
and religious texts. These are summarized in Table 3.

41 See Bannañje (1974a: 90–97).
42 See Giri Ācārya (2013: 533).
43 Another name of Lord Viṣṇu. Bhikṣu
(n.d.) states अत उंत मलूगथिेत। मलूगथतु शी-
नारायणकृपवै नवयः।
44 Vyāsadāsa (2007: xii) says ‘ಆ�ಾಯರ್åñ
ಮೂಲಗರ್ಂಥĉಂದć Ċೕದ ಾಯ್ಸþೕವåñ ಸಮಮ್ತ ಾದ

ಗರ್ಂಥಗĉೕ.’ Vedavyāsa, considered to be an
incarnation of Viṣṇu, is a celebrated author
of texts such as Mahābhārata, Purāṇas, etc., as
per the Mādhva tradition. In the foreword
to Vyāsadāsa (2007: III-IV), Nāgabhūṣaṇa
Rao interprets mūla-grantha as the work
which is in line with Brahmasiddhānta.
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Verses Text Similarities in See footnote(s)

2–5 Grahacāranibandhana-
saṅgraha of
Haridatta

Multipliers and divisors for com-
puting mean longitudes and adopt-
ing revised rates of motion through
parahita system

57, 63,
71, 64

6 Karaṇaratna of
Devācārya

A location crossed by prime me-
ridian

78

8–9 Laghubhāskarīya of
Bhāskara I

The mathematical expressions of
bhujāntara correction

92

10–11 Śaṅkaranārāyaṇa’s
commentary on
Laghubhāskarīya

The verses on Rsines 119

16–18 Karaṇaratna of
Devācārya

Verse 17, and the model to compute
the motion of equinox

140,
144

25 Tithinirṇayaa of
Śrī Trivikrama-
paṇḍitācārya

Verse on viddhaikādaśī 191

26 Bhaviṣyat-purāṇa of
Vedavyāsa

Verse on Viṣṇupañcaka 206

27 Skānda-purāṇa of
Vedavyāsa

The content of the verse on reaping
benefits of a fast

209

28 Kṛṣṇāmṛtamahārṇava
of Śrī Madhvācārya

Verse on Saṅkoca-dvādaśī 212

a See Section 1.3 for our discussion on Authorship.

Table 3: Similarities between Tithinirṇaya and other texts

3 MEAN LONGITUDE OF THE SUN AT MEAN SUNRISE AT
LAṄKĀ

भूश्री̠भՀािक̠चԡोनात् कןहात् कालव̠धर्तात् ।45

गरुडԅेयवाΐाղं Ӏ΃ा सौरं वृथाफलम् ॥ २ ॥
रा׻ादं्य मԅमं कुयार्द् गोϝाद् धीसूनुनागजाः ।
कलाإ΃ा ध्रुवं कुयार्द् देशाधारहरापर्कम् ॥ ३ ॥ 46 ॥ अनुटभु ॥् 
bhūśrībhinnākicintyonāt kalyahāt kālavardhitāt |
garuḍadhyeyavākyāptaṃ tyaktvā sauraṃ vṛthāphalam  || 2 ||

45 Bannañje (1974b: 176) notes that the al-
ternate readings such as भगूीिभनािक, कयदात ्
and कालविज र्तात ् are scribal errors, which
lead to wrong results. Bhikṣu (n.d.) has the
reading भशूीिभना र्िकिचोनात क्यदात ्..।

46 Bannañje (1974b: 176) notes that the
alternate readings such as धीसनूनुागणाः,
कलाचवा and दशेाधारनराप र्कम ् are scribal
errors. Bhikṣu (n.d.) has the reading
दशेाधारहरािपताः or दशेाधारहयािज र्त।
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rāśyādyaṃ madhyamaṃ kuryād goghnād dhīsūnunāgajāḥ |
kalāstyaktvā dhruvaṃ kuryād deśādhāraharārpakam || 3 || || anuṣṭubh ||
Having discarded the futile result [i.e., quotient] obtained from
the kali-ahargaṇa [that is] reduced by bhūśrībhinnākicintya (1610424)
[and] multiplied by kāla (31) [and] divided by garuḍadhyeya (11323),
may [one] do the [conversion of the fractional part into units] begin-
ning with rāśis, etc. Having subtracted [from the previous result]
the minutes (kalā) (quotient) arising from [the kali-ahargaṇa that
is reduced by bhūśrībhinnākicintya (1610424) and] multiplied by go
(3) [and divided by] dhīsūnunāga (30079), apply the dhruva [equal
to] deśādhāraharārpakam (11 [signs] 28 [degrees] 29 [minutes] 58
[seconds]). One may do the mean pertaining to the Sun (madhyamam
sauram) [in this manner].

The above two verses prescribe the procedure to find the mean longitude (𝜃∘𝑠) of
the Sun at the instant (𝑡∘) of mean sunrise for an observer at Laṅkā (𝐿) on the
desired kali-ahargaṇa (𝐴).

The following is the rule prescribed in the verses:

madhyamasaura = 􏿰
𝐴′ × kāla

garuḍadhyeya􏿳 (convert the fractional part into rāśis, etc.)

− 􏿰
𝐴′ × go

dhīsūnunāga􏿳 (in kalās) + 􏿮deśādhāraharārpakam􏿱 (in rāśis, etc.),

or, in our notation,47

𝜃∘𝑠 = 􏿰
𝐴′ × 31
11323 􏿳

𝑟;𝑑,𝑚,𝑠
− 0; 0, 𝐴

′ × 3
30079 , 0 + 11; 28, 29, 58 (1)

where 𝐴′ corresponds to the number of mean civil days elapsed since the start
of a convenient epoch, chosen in the text to be the kali-ahargaṇa of 1610424 (bhū-
śrībhinnākicintya). Thus,

𝐴′ = 𝐴 − 1610424. (2)

It may be noted that the verses refer to the integral part of 􏿯𝐴
′×31

11323 􏿲 as vṛthāphala
(futile result), perhaps because this quantity is unnecessary here. The position in
rāśis, degrees, minutes, and seconds is obtained from the fractional part of 􏿯𝐴

′×31
11323 􏿲.

The dhruva or mean longitude (𝜃𝑒𝑠) of the Sun at epoch, in the same units, is stated
to be 11; 28, 29, 58, employing the kaṭapayādi notation deśādhāraharārpakam.

47 The subscript 𝑟; 𝑑, 𝑚, 𝑠 here indicates that
the expression is to be computed in the units

of rāśis, degrees, minutes and seconds.
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Figure 3: (a) A diagram showing a celestial sphere for an observer at Laṅkā (𝐿)
at kalyādi, and (b) A diagram when viewed from the Direction of View (DoV1).

3.1 EXPLANATION
According to the Āryabhaṭīya, kaliyuga commences at mean sunrise at Laṅkā (𝐿),
and the mean Sun is located at meṣādi at that instant (𝑡𝑘), i.e., 𝜃𝑘𝑠 = 0∘.48 Fig-
ure 3 depicts the corresponding geometry of the celestial sphere for an observer
at Laṅkā (𝐿) at the instant (𝑡𝑘) of kalyādi from two different viewpoints. Fig-
ure 3a depicts the celestial sphere from the viewpoint of the eastern horizon, in
which the observer at Laṅkā (𝐿) is located at the center (𝑂) and his correspond-
ing zenith is indicated as 𝑍𝐿.49 This figure further depicts an ecliptic, which is
assumed to be aligned with the celestial equator, i.e., neglecting the obliquity of
the ecliptic.50 The mean Sun (𝑆), located at meṣādi (𝑀), and orbiting along the
ecliptic, is just about to rise at Cardinal East (𝐸), indicating the instant of mean
sunrise. Alternatively, the mean sunrise can also be conceived to be at the instant
when a fictitious body51 𝑆−90 — a point on the ecliptic which is 90∘ behind the Sun
(𝑆) — is on the observer’s meridian.52 Figure 3b depicts the same instant from
the perspective of the northern horizon, indicated by Direction of View (DoV1)
as shown in Figure 3a.

48 See footnote 38.
49 As the radius of the Earth is considered
negligible compared to the radius of the ce-
lestial sphere, the center of the Earth and the
observer at Laṅkā (𝐿) are both represented
at the center (𝑂) of the celestial sphere.
50 As the observer at Laṅkā (𝐿) has latit-
ude 𝜙 = 0, the celestial equator is oriented

perpendicular to the horizon and passes
through the zenith 𝑍𝐿.
51 This fictitious body 𝑆−90 is introduced to
help explain the rationales of deśāntara and
bhujāntara corrections. See Sections 6.1 and
7.1.
52 Here, it is prime meridian.
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Figure 4: (a) A diagram showing the mean Sun (𝑆) at kalyādi, along with its 𝑆−90,
orbiting around the spherical Earth along the ecliptic, and (b) A diagram when
viewed from the Direction of View (DoV2).

Alternatively, devoid of the celestial sphere in Figure 3, the same instant (𝑡𝑘)
of kalyādi and the annual motion of the mean Sun (𝑆) around the spherical Earth
is simply depicted in Figure 4.53 Figure 4a depicts a spherical Earth54 from the
viewpoint of the north pole (𝑃𝑁), showing its center (𝑂), prime meridian (𝑃𝑀),
and Laṅkā (𝐿). The mean Sun (𝑆), along with its 𝑆−90, is orbiting in the ecliptic
around the Earth in an anti-clockwise direction. The mean Sun (𝑆) positioned
at meṣādi (𝑀) and its corresponding 𝑆−90 aligned with the prime meridian indic-
ates the instant of mean sunrise at Laṅkā (𝐿), thus depicting the instant (𝑡𝑘) of
kalyādi. Figure 4b represents the same geometry when viewed from Direction of
View (DoV2) as shown in Figure 4a. So far, the geometrical interpretation of the
instant (𝑡𝑘) of kalyādi is discussed. Now, to compute the mean longitudes at the
instant (𝑡∘) of mean sunrise at Laṅkā (𝐿) at any desired kali-ahargaṇa (𝐴), con-
sider Figure 5. This figure is similar to Figure 4a and depicts the mean longitude
(𝑀𝑂̂𝑆 = 𝜃∘𝑠) of the Sun at the same instant (𝑡∘) and its computation is explained
as follows.

53 The geometric representations similar to
Figure 4 are used in explanation of the cor-
rections such as deśāntara, bhujāntara, and
manda, hence introduced in this section. Fur-
ther, the geometric equivalence of Figures 3
and 4 is utilized in the explanation of the

bhujāntara correction.
54 The radius of the Earth is small when
compared to the radius of the ecliptic hence,
Earth, drawn here and in other figures, is not
to the scale.
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Figure 5: A diagram showing the position (𝜃∘𝑠) of mean Sun at the instant (𝑡∘) of
mean sunrise at Laṅkā (L) on a desired kali-ahargaṇa (𝐴).

As the instant (𝑡𝑘) of kalyādi is the mean sunrise at Laṅkā (𝐿), and the mean
civil day is the time between successive mean sunrises at the location, any de-
sired kali-ahargaṇa (𝐴) signifies the instant of mean sunrise at Laṅkā (𝐿). Given,
from the Table 2, the position (𝜃𝑘𝑠) of Sun at kalyādi to be 0∘, the number of civil
days (𝐷𝑐) and the number of revolutions (𝑅𝑠) of the Sun in a mahāyuga to be
1577917500 and 4320000 respectively, the mean longitude (𝜃∘𝑠) of the Sun at the
instant (𝑡∘) of mean sunrise for an observer at Laṅkā (𝐿) on a desired kali-ahargaṇa
(𝐴) is computed as:55

𝜃∘𝑠 = 𝜃𝑘𝑠 + 􏿰𝐴 × 𝑅𝑠
𝐷𝑐

􏿳
𝑟;𝑑,𝑚,𝑠

= 􏿰𝐴 × 4320000
1577917500􏿳𝑟;𝑑,𝑚,𝑠

, (3)

where the ratio

𝑅𝑠
𝐷𝑐

= 𝜃̇∘𝑠 =
4320000

1577917500 􏿶
rev
day􏿹 ≈ 59.136 􏿶

min
day 􏿹 (4)

55 See Laghubhāskarīya verses I.15–17,
Shukla (1963: 5–6), and Mahābhāskarīya
verse I.8, Shukla (1960: 6–7), Śiṣyadhī-

vṛddhidatantra verse I.17, Chatterjee
(1981: 13), Karaṇapaddhati verse I.11, Pai,
Ramasubramanian, et al. (2018: 13–14).
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represents the mean rate of motion (𝜃̇∘𝑠) of the Sun.
The alternate approach given by the present karaṇa text to obtain the longit-

ude of the mean planet is to add the position of the mean planet at the karaṇa’s
epoch (1610424), known as dhruva (𝜃𝑒), to the motion of the mean planet calcu-
lated for the elapsed number of days (𝐴′ = 𝐴 − 1610424) since epoch. For Sun,
(3) can be conceived as:

𝜃∘𝑠 = 𝜃𝑘𝑠 + 􏿰1610424 ×
𝑅𝑠
𝐷𝑐

􏿳
𝑟;𝑑,𝑚,𝑠

+ 􏿰𝐴′ × 𝑅𝑠
𝐷𝑐

􏿳
𝑟;𝑑,𝑚,𝑠

= 𝜃𝑒𝑠 + 􏿰𝐴′ × 𝑅𝑠
𝐷𝑐

􏿳
𝑟;𝑑,𝑚,𝑠

, (5)

where the dhruva or position (𝜃𝑒𝑠) of the mean Sun at the instant (𝑡𝑒) of mean
sunrise at Laṅkā (𝐿) at epoch, when calculated is observed to be56

𝜃𝑒𝑠 = 11; 28, 29, 57, 39.85, (6)

which is approximated to 11; 28, 29, 58 in the verse. The motion of the mean Sun
since the epoch can be calculated as prescribed in the verse as:57

𝐴′ × 31
11323 (rev) − 𝐴′ × 3

30079 (min) ≈ 𝐴′ (days) × 59.136 􏿶
min
day 􏿹 . (7)

As the mean rate of motion of the Sun in (7) and (4) are same and precise up
to 8 decimal places,

􏿰𝐴′ × 𝑅𝑠
𝐷𝑐

􏿳
𝑟;𝑑,𝑚,𝑠

= 𝐴′ × 31
11323 (rev) − 𝐴′ × 3

30079 (min). (8)

Thus, employing (6) and (8) in (5), (1) and (5) are equivalent.

56 As𝜃𝑘
𝑠 = 0∘, 𝜃𝑒

𝑠 = 1610424×𝑅𝑠÷𝐷𝑐. The res-
ultant quotient, 4408, represents the num-
ber of years elapsed or the number of revolu-
tions completed by the Sun since kalyādi at
the epoch, while the fractional part is util-
ized to determine the rāśis, and other subdi-

visions traversed by the Sun.
57 The similar ratio 31

11323
is observed

in Grahacāranibandhana verse I.21, and in
Grahacāranibandhanasaṅgraha verse A.5. See
Sarma (1954: 4,23).
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4 MEAN LONGITUDE OF THE MOON AT MEAN SUNRISE AT
LAṄKĀ

अनԜवृद्धाद् बौधाङ्गतुेןने԰ुः शुकाहतात् । 58

प्राज्ञाцिलभृदाղोनأारशोभाितनािकनी ॥ ४ ॥59 ॥ अनुटभु ॥् 
anantavṛddhād baudhāṅgatulyenenduḥ śukāhatāt |
prājñāñjalibhṛdāptonastāraśobhātinākinī || 4 || || anuṣṭubh ||
From the [kali-ahargaṇa that is reduced by 1610424 and] multiplied
by ananta (600) [and divided] by baudhāṅgatulya (16393) [discard
the quotient thus obtained and convert the fractional part into rāśi,
etc.]60 [This] subtracted by [the result] obtained from [the division
of] the product of [kali-ahargaṇa reduced by 1610424 and] śuka (15)
by prājñāñjalibhṛd (43802) [and increased by the dhruva equal to] tāra-
śobhātinākinī (01 [sign] 06 [degrees] 45 [minutes] 26 [seconds]) is the
[mean] Moon (indu).

The above verse (to be read in conjunction with verses 2 and 3) prescribes
the procedure to find the mean longitude (𝜃∘𝑚) of the Moon at the instant (𝑡∘) of
mean sunrise for an observer at Laṅkā (𝐿) on a desired kali-ahargaṇa (𝐴). The
following is the rule prescribed in the verse:

indu = 􏿰
𝐴′ × ananta

baudhāṅgatulya􏿳 (convert the fractional part into rāśis, etc.)

− 􏿰
𝐴′ × śuka

prājñāñjalibhṛd􏿳 (in kalās) + [tāraśobhātinākinī] (in rāśis, etc.),

or, in our notation,

𝜃∘𝑚 = 􏿰
𝐴′ × 600
16393 􏿳

𝑟;𝑑,𝑚,𝑠
− 0; 0, 𝐴

′ × 15
43802 , 0 + 01; 06, 45, 26, (9)

where 𝐴′ is the elapsed number of civil days since the epoch given by (2).

58 Bannañje (1974b: 178) notes that the
alternate readings such as अनतवृधात ्वौधाग
and तलेुनेुशकुाहतात ् are scribal errors.
Bhikṣu (n.d.) has the reading बोधागतुयने।
59 Bannañje (1974b: 178) notes an alternate
reading तारशेोभाितनाकनी, which does not

change the result. Bhikṣu (n.d.) has
the reading पज्ञाजिलहृदातोन, and suggests
रोतोचंयाजकजनम ् in place of तारशोभाितनािकनी।
60 To be read in conjunction with verses 2
and 3.
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4.1 EXPLANATION
Given, from the Table 2, the position (𝜃𝑘𝑚) of the Moon at kalyādi to be 0∘, the
number of civil days (𝐷𝑐) and the number of revolutions (𝑅𝑚) of the Moon in a
mahāyuga to be 1577917500 and 57753336 respectively, the mean longitude (𝜃∘𝑚)
of the Moon at the instant (𝑡∘) of mean sunrise for an observer at Laṅkā (𝐿) on a
desired kali-ahargaṇa (𝐴) is computed as:61

𝜃∘𝑚 = 𝜃𝑘𝑚 + 􏿰𝐴 × 𝑅𝑚
𝐷𝑐

􏿳
𝑟;𝑑,𝑚,𝑠

= 􏿰𝐴 × 57753336
1577917500􏿳𝑟;𝑑,𝑚,𝑠

, (10)

where the ratio

𝑅𝑚
𝐷𝑐

= 𝜃̇∘𝑚 = 57753336
1577917500 􏿶

rev
day􏿹 ≈ 790.5813 􏿶

min
day 􏿹 (11)

represents the mean rate of motion (𝜃̇∘𝑚) of the Moon.
This karaṇa text presents (10) as:

𝜃∘𝑚 = 𝜃𝑘𝑚 + 􏿰1610424 ×
𝑅𝑚
𝐷𝑐

􏿳
𝑟;𝑑,𝑚,𝑠

+ 􏿰𝐴′ × 𝑅𝑚
𝐷𝑐

􏿳
𝑟;𝑑,𝑚,𝑠

= 𝜃𝑒𝑚 + 􏿰𝐴′ × 𝑅𝑚
𝐷𝑐

􏿳
𝑟;𝑑,𝑚,𝑠

, (12)

where the dhruva or position (𝜃𝑒𝑚) of the mean Moon at the instant (𝑡𝑒)
of mean sunrise at Laṅkā (𝐿) at epoch, when calculated is observed to be
01; 08, 08, 24, 18.28,62 while the value stated in the verse is 01; 06, 45, 26. The
motion of the mean Moon since the epoch can be calculated as prescribed in the
verse as:63

𝐴′ × 600
16393 (rev) − 𝐴′ × 15

43802 (min) ≈ 𝐴′ (days) × 790.581 (min/day). (13)

The difference in the rates between (11) and (13) and in the dhruvas can be
attributed to an additional correction called śakābdasaṃskāra, based upon parahita
system, in the Tithinirṇaya.

61 Refer footnote 55.
62 As 𝜃𝑘

𝑚 = 0∘, 𝜃𝑒
𝑚 = 1610424 × 𝑅𝑚 ÷ 𝐷𝑐.

The resultant quotient, 58943, represents
the number of revolutions completed by the
Moon since kalyādi at the epoch, while the
fractional part is utilized to determine the
rāśis, and other subdivisions traversed by

the Moon.
63 The similarity in ratio 600

16393
is observed

in Grahacāranibandhana verse I.22, Graha-
cāranibandhanasaṅgraha verse A.8, Sarma
(1954: 4,24), and in Khaṇḍakhādyaka verse
I.10, Sengupta (1934).
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The parahita system introduces a correction to the mean longitudes of the
planets after śaka 444 or kali years 3623.64 If 𝑆𝑦 and 𝐾𝑦 are the śaka years and kali
years elapsed, respectively, then the correction (Δ∘

𝑝) to the mean longitude of a
planet (𝑝) is given by

Δ∘
𝑝 = 􏿴𝑆𝑦 − 444􏿷 × 𝑔

ℎ (min) = 􏿴𝐾𝑦 − 3623􏿷 × 𝑔
ℎ (min), (14)

where 𝑔 and ℎ are known as guṇakāra (multiplier) and hāraka (divisor) respect-
ively, and takes different values for different planets. This correction is not ap-
plicable for the Sun, and therefore not employed in the computation of the mean
Sun.

From (14), the annual rate and the daily rate at which the correction is applied
to the mean longitude of a given planet can be inferred to be

Δ̇∘
𝑝 =

𝑔
ℎ 􏿶

min
year􏿹 =

𝑔
ℎ × 4320000

1577917500 􏿶
min
day 􏿹 . (15)

4.1.1 Correcting the mean rate of motion of the Moon
The values of 𝑔 and ℎ for the Moon are stated to be 9 and 85 respectively,65 and the
correction is negatively applied to the mean rate of motion of the Moon. Thus,
the corrected mean rate of motion (𝜃̇𝑐𝑚) of the Moon will be

𝜃̇𝑐𝑚 = 𝜃̇∘𝑚 − Δ̇∘
𝑚 = 790.5813 − 9

85 × 4320000
1577917500 ≈ 790.581 􏿶

min
day 􏿹 , (16)

which is same as (13) and precise up to 8 decimal places. Hence, Tithinirṇaya
incorporates parahita modified Āryabhaṭīya rates of motion. For a modified rate
of motion 􏿵𝜃̇𝑐𝑚 = 𝑅𝑐𝑚

𝐷𝑐
􏿸 of the Moon, the modified revolutions (𝑅𝑐

𝑚) of the Moon in
a mahāyuga will be 57753314.8. Hence,

􏿰𝐴′ × 𝑅𝑐
𝑚

𝐷𝑐
􏿳
𝑟;𝑑,𝑚,𝑠

= 𝐴′ × 600
16393 (rev) − 𝐴′ × 15

43802 (min). (17)

Thus, the revised rates are incorporated in computing the mean longitude of
the Moon as:

𝜃∘𝑚 = 𝜃𝑘𝑚 + 􏿰𝐴 × 𝑅𝑐
𝑚

𝐷𝑐
􏿳
𝑟;𝑑,𝑚,𝑠

= 􏿰𝐴 × 57753314.8
1577917500􏿳𝑟;𝑑,𝑚,𝑠

. (18)

64 See Grahacāranibandhanasaṅgraha verses
A.17,19, Sarma (1954: 25), and Karaṇa-
paddhati verse I.12, Pai, Ramasubramanian,
et al. (2018: 16–17).

65 See Grahacāranibandhanasaṅgraha verse
A.18, Sarma (1954: 25), and Karaṇapaddhati
verse I.12, Pai, Ramasubramanian, et al.
(2018: 16–18).
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4.1.2 Correcting the dhruva of the Moon at kalyādi
The śakābdasaṃskāra is incorporated to revise the rates of motion of the planets
beyond the śaka or kali year 444 or 3623 respectively, but (18) also incorporates
the revised rates for the days of kaliyuga before kali year 3623. As the correction
incorporated for the Moon reduces its rate of motion, the reduced motion of the
Moon for 3623 kali years will be

3623 × 𝑔
ℎ (min) = 3623 × 9

85 (min), (19)

which is added to the dhruva or position (𝜃𝑘𝑚) of the Moon at kalyādi to get the
corrected dhruva (𝜃𝑐𝑘𝑚) at kalyādi. Thus, the corrected position (dhruva) of the
Moon at kalyādi is66

𝜃𝑐𝑘𝑚 = 𝜃𝑘𝑚+3623× 9
85(min) = 0; 0, 0, 0+0; 0, 3623× 9

85, 0 = 0; 6, 23, 36, 42.35. (20)

Hence, for a parahita corrected Āryabhaṭīya system, the longitude of the mean
Moon is computed as:

𝜃∘𝑚 = 𝜃𝑐𝑘𝑚 + 􏿰𝐴 × 𝑅𝑐
𝑚

𝐷𝑐
􏿳
𝑟;𝑑,𝑚,𝑠

= 𝜃𝑐𝑘𝑚 + 􏿰1610424 ×
𝑅𝑐
𝑚

𝐷𝑐
􏿳
𝑟;𝑑,𝑚,𝑠

+ 􏿰𝐴′ × 𝑅𝑐
𝑚

𝐷𝑐
􏿳
𝑟;𝑑,𝑚,𝑠

= 𝜃𝑒𝑚 + 􏿰𝐴′ × 𝑅𝑐
𝑚

𝐷𝑐
􏿳
𝑟;𝑑,𝑚,𝑠

, (21)

where the dhruva or position (𝜃𝑒𝑚) of the mean Moon at the instant (𝑡𝑒) of mean
sunrise at Laṅkā (𝐿) at epoch is computed to be

𝜃𝑒𝑚 = 𝜃𝑐𝑘𝑚 + 􏿰1610424 ×
𝑅𝑐
𝑚

𝐷𝑐
􏿳
𝑟;𝑑,𝑚,𝑠

= 0; 6, 23, 36, 42.35 + 1; 0, 21, 34, 12.82 ≈ 01; 06, 45, 10, 55. (22)

The value given in the verse deviates from (22) by ≈ 0; 0, 0, 16. Hence, em-
ploying (22) and (17) in (21), (9) and (21) are equivalent.

66 See Karaṇapaddhati verse II.4, Pai, Rama- subramanian, et al. (2018: 57–60).
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5 MEAN LONGITUDE OF THE MOON’S APOGEE AT MEAN
SUNRISE AT LAṄKĀ

िदने֥ो द्रागरागाղः चԶोЛः ािՀभाहतात् ।67ظ

जगӋेनाङ्गल֔ोनः श्रे؎̠चԡोऽֶुनाऽचर्ने ॥ ५ ॥68 ॥ अनुटभु ॥् 
dinebhyo drāgarāgāptaḥ candroccaḥ syānnibhāhatāt |
jagatsenāṅgalabdhonaḥ śreṣṭhacintyo’mbunā’rcane || 5 || || anuṣṭubh ||
The result (remainder) obtained from [the division of the difference
of kali-ahargaṇa and 1610424] days by drāgarāgā (3232), [converted
into rāśi, etc.], subtracted by the result obtained from [the division
of] the product of nibhā (40) [and the difference of kali-ahargaṇa
and 1610424] days by jagatsenāṅga (30738) in [addition to the
dhruva equal to] śreṣṭhacintyo’mbunā’rcane (06 [signs] 03 [degrees]
16 [minutes] 22 [seconds]) shall be the [mean] apogee of the Moon
(candrocca).

The above verse (to be read in conjunction with verses 2 and 3) prescribes the
procedure to find the mean longitude (𝜃∘𝑚_𝑎𝑝) of the Moon’s apogee at the instant
(𝑡∘) of mean sunrise for an observer at Laṅkā (𝐿) on a desired kali-ahargaṇa (𝐴).
The following is the rule prescribed in the verse:

candroccaḥ = 􏿰
𝐴′

drāgarāgā􏿳 (convert the fractional part into rāśis, etc.)

− 􏿰
𝐴′ × nibhā

jagatsenāṅga􏿳 (in kalās) + 􏿮śreṣṭhacintyo’mbunā’rcane􏿱 (in rāśis, etc.),

or, in our notation,

𝜃∘𝑚_𝑎𝑝 = 􏿰
𝐴′

3232􏿳𝑟;𝑑,𝑚,𝑠
− 0; 0, 𝐴

′ × 40
30738 , 0 + 06; 03, 16, 22. (23)

where 𝐴′ is the elapsed number of civil days since the epoch given by (2).

5.1 EXPLANATION
Given, from Table 2, the position (𝜃𝑘𝑚_𝑎𝑝) of the Moon’s apogee at kalyādi to be
3; 0, 0, 0, the number of civil days (𝐷𝑐) and the number of revolutions (𝑅𝑚_𝑎𝑝) of
the Moon’s apogee in a mahāyuga to be 1577917500 and 488219 respectively, the

67 Bannañje (1974b: 179) notes िदनने as an al-
ternate reading, and िदनेयो दागरागात and िद-
नने घादानरागात र्ः छदोचः as scribal errors.

68 This verse is incomplete in the commen-
tary of Bhikṣu (n.d.). Also, he proposes
शेठज्ञानोशरानय े in place of शेटािचोबजुाच र्न।े
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mean longitude (𝜃∘𝑚_𝑎𝑝) of the Moon’s apogee at the instant (𝑡∘) of mean sunrise
for an observer at Laṅkā (𝐿) on a desired kali-ahargaṇa (𝐴) is computed as:69

𝜃∘𝑚_𝑎𝑝 = 𝜃𝑘𝑚_𝑎𝑝 + 􏿰𝐴 ×
𝑅𝑚_𝑎𝑝

𝐷𝑐
􏿳
𝑟;𝑑,𝑚,𝑠

= 3; 0, 0, 0 + 􏿰𝐴 × 488219
1577917500􏿳𝑟;𝑑,𝑚,𝑠

, (24)

where the ratio

𝑅𝑚_𝑎𝑝

𝐷𝑐
= 𝜃̇∘𝑚_𝑎𝑝 =

488219
1577917500 􏿶

rev
day􏿹 ≈ 6.6832 􏿶

min
day 􏿹 (25)

represents the mean rate of motion (𝜃̇∘𝑚_𝑎𝑝) of the Moon’s apogee.
This karaṇa text presents (24) as:

𝜃∘𝑚_𝑎𝑝 = 𝜃𝑘𝑚_𝑎𝑝 + 􏿰1610424 ×
𝑅𝑚_𝑎𝑝

𝐷𝑐
􏿳
𝑟;𝑑,𝑚,𝑠

+ 􏿰𝐴′ ×
𝑅𝑚_𝑎𝑝

𝐷𝑐
􏿳
𝑟;𝑑,𝑚,𝑠

= 𝜃𝑒𝑚_𝑎𝑝 + 􏿰𝐴′ ×
𝑅𝑚_𝑎𝑝

𝐷𝑐
􏿳
𝑟;𝑑,𝑚,𝑠

, (26)

where the dhruva or position (𝜃𝑒𝑚_𝑎𝑝) of the mean Moon’s apogee at the instant
(𝑡𝑒) of mean sunrise at Laṅkā (𝐿) at epoch, when calculated is observed to be
06; 09, 37, 40, 45.73,70 while the value stated in the verse is 06; 03, 16, 22. The mo-
tion of the mean Moon’s apogee since the epoch can be calculated as prescribed
in the verse as:71

𝐴′

3232 (rev) − 𝐴′ × 40
30738 (min) ≈ 𝐴′ (days) × 6.6818 (min/day). (27)

The difference in the rates between (25) and (27) and in the dhruvas are again
attributed to a correction called śakābdasaṃskāra as explained in Section (4.1).

69 See Laghubhāskarīya verses I.15–17,
Shukla (1963: 5–6), and Mahābhāskarīya
verses I.8,40, Shukla (1960: 6–7,28), Śiṣyadhī-
vṛddhidatantra verse I.17,38–39, Chatterjee
(1981: 13,26), Karaṇapaddhati verse I.11, Pai,
Ramasubramanian, et al. (2018: 13–14).
70 As 𝜃𝑘

𝑚_𝑎𝑝 = 3; 0, 0, 0, 𝜃𝑒
𝑚_𝑎𝑝 = 3; 0, 0, 0 +

1610424 × 𝑅𝑚_𝑎𝑝 ÷ 𝐷𝑐. The resultant quo-
tient, 498, represents the number of revolu-
tions completed by the Moon’s apogee since

kalyādi at the epoch, while the fractional
part is utilized to determine the rāśis, and
other subdivisions traversed by the Moon’s
apogee.
71 The similar ratio 1

3232
is observed in

Grahacāranibandhana verse I.28, Graha-
cāranibandhanasaṅgraha verse A.9, Sarma
(1954: 5,24), and Khaṇḍakhādyaka verse I.13,
Sengupta (1934).
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5.1.1 Correcting the mean motion of Moon’s apogee
The values of 𝑔 and ℎ for Moon’s apogee are stated to be 65 and 134 respectively,72

and the correction is negatively applied to the mean rate of motion of the Moon’s
apogee. Thus, the corrected mean rate of motion (𝜃̇𝑐𝑚_𝑎𝑝) of the Moon’s apogee
will be

𝜃̇𝑐𝑚_𝑎𝑝 = 𝜃̇∘𝑚_𝑎𝑝 − Δ̇∘
𝑚_𝑎𝑝 = 6.6832 − 65

134 × 4320000
1577917500 ≈ 6.6818 􏿶

min
day 􏿹 , (28)

which is same as (27) and precise up to 8 decimal places. For a modified rate of
motion 􏿵𝜃̇𝑐𝑚_𝑎𝑝 =

𝑅𝑐𝑚_𝑎𝑝
𝐷𝑐

􏿸 of the Moon’s apogee, the modified revolutions (𝑅𝑐
𝑚_𝑎𝑝)

of the Moon’s apogee in a mahāyuga will be 488121.9. Hence,

􏿰𝐴′ ×
𝑅𝑐
𝑚_𝑎𝑝

𝐷𝑐
􏿳
𝑟;𝑑,𝑚,𝑠

= 𝐴′

3232 (rev) − 𝐴′ × 40
30738 (min). (29)

Thus, the revised rates are incorporated in computing the mean longitude of
the Moon’s apogee as:

𝜃∘𝑚_𝑎𝑝 = 𝜃𝑘𝑚_𝑎𝑝 + 􏿰𝐴 ×
𝑅𝑐
𝑚_𝑎𝑝

𝐷𝑐
􏿳
𝑟;𝑑,𝑚,𝑠

= 3; 0, 0, 0 + 􏿰𝐴 × 488121.9
1577917500􏿳𝑟;𝑑,𝑚,𝑠

. (30)

5.1.2 Correcting the dhruva of Moon’s apogee at kalyādi
Following the explanation in section 4.1.2, the corrected position (dhruva) of the
Moon’s apogee at kalyādi will be73

𝜃𝑐𝑘𝑚_𝑎𝑝 = 𝜃𝑘𝑚_𝑎𝑝+3623×
65
134(min) = 3; 0, 0, 0+0; 29, 17, 25, 31.34 = 3; 29, 17, 25, 31.34.

(31)
Hence, for a parahita corrected Āryabhaṭīya system, the longitude of the mean

Moon’s apogee is computed as:

𝜃∘𝑚_𝑎𝑝 = 𝜃𝑐𝑘𝑚_𝑎𝑝 + 􏿰𝐴 ×
𝑅𝑐
𝑚_𝑎𝑝

𝐷𝑐
􏿳
𝑟;𝑑,𝑚,𝑠

= 𝜃𝑐𝑘𝑚_𝑎𝑝 + 􏿰1610424 ×
𝑅𝑐
𝑚_𝑎𝑝

𝐷𝑐
􏿳
𝑟;𝑑,𝑚,𝑠

+ 􏿰𝐴′ ×
𝑅𝑐
𝑚_𝑎𝑝

𝐷𝑐
􏿳
𝑟;𝑑,𝑚,𝑠

= 𝜃𝑒𝑚_𝑎𝑝 + 􏿰𝐴′ ×
𝑅𝑐
𝑚_𝑎𝑝

𝐷𝑐
􏿳
𝑟;𝑑,𝑚,𝑠

, (32)

72 See Grahacāranibandhanasaṅgraha verse
A.18, Sarma (1954: 25), and Karaṇapaddhati
verse I.12, Pai, Ramasubramanian, et al.

(2018: 16–18).
73 See Karaṇapaddhati verse II.4, Pai, Rama-
subramanian, et al. (2018: 57–60).
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where the dhruva or position (𝜃𝑒𝑚_𝑎𝑝) of the mean Moon’s apogee at the instant
(𝑡𝑒) of mean sunrise at Laṅkā (𝐿) at epoch is computed to be

𝜃𝑒𝑚_𝑎𝑝 = 𝜃𝑐𝑘𝑚_𝑎𝑝 + 􏿰1610424 ×
𝑅𝑐
𝑚_𝑎𝑝

𝐷𝑐
􏿳
𝑟;𝑑,𝑚,𝑠

= 3; 29, 17, 25, 31.34 + 02; 03, 58, 59, 14.5 ≈ 06; 03, 16, 24, 45.85. (33)

The value given in the verse deviates from (33) by ≈ −0; 0, 0, 2. Hence, em-
ploying (33) and (29) in (32), (23) and (32) are equivalent.

6 DEŚĀNTARA CORRECTION: TO OBTAIN MEAN LONGITUDES
AT MEAN SUNRISE AT THE OBSERVER’S MERIDIAN

लङ्काؼाׁािदरेखायाः पूवर्प̠ײमदेशयोः ।74

ग्रहाणां मԅसं؟ारिलղा ऋणधनं क्रमात् ॥ ६ ॥75

पापϝादԈस϶ानादकर् ल֔िविलिղकाः ।76

अकर् ԰ोरनकर्ेظ ϝात् सानुभूल֔िलिղकाः ॥ ७ ॥77 ॥ अनुटभु ॥् 
laṅkāsvāmyādirekhāyāḥ pūrvapaścimadeśayoḥ |
grahāṇāṃ madhyasaṃskāraliptā ṛṇadhanaṃ kramāt || 6 ||
pāpaghnādadhvasaṅkhyānādarkalabdhaviliptikāḥ |
arkasyendoranarkaghnāt sānubhūlabdhaliptikāḥ || 7 || || anuṣṭubh ||
In the regions to the east and west of the meridian [passing through]
Laṅkā, Svāmīnagara (svāmya),78 etc., the liptis [obtained] from the
mean [deśāntara] correction of the planets [shall be] negative and
positive respectively. The viliptis obtained from the division of
the product of the magnitude of longitudinal separation (adhva)
[in yojanas] and pāpa (11) by arka (10) [shall be] of the Sun. The
liptis obtained from the division of the product of the longitudinal
separation in yojanas and anarka (100) by sānubhū (407) [shall be] of
the Moon.

74 Bannañje (1974b: 181) states
लकावायािदरखेायाः to be incomprehens-
ible and suggests लकावािदरखेायाः as the
possible reading.
75 Bannañje (1974b: 181) notes ऋणधनकमात ् 
as an alternate reading and गणानां मसंकार
as a scribal error. Bhikṣu (n.d.) has the read-
ing मयसंकारो िलतातणृधनम।्
76 Bhikṣu (n.d.) has the reading चापनात।्
77 This half of the verse is missing in Bhikṣu
(n.d.).

78 See Karaṇaratna verse I.30, Shukla
(1979: 21–22), where Shukla recognizes the
modern Svāmīhalli (14.97∘𝑁, 76.57∘𝐸) is
located in the Hospet district of Karnataka.
Vyāsadāsa (2007: 13–15) refers svāmya to be
dominion. Hence, Laṅkā-svāmya indicates
the dominion of Laṅkā, where (ādi) etc.,
refers to other places like Avantī, and so on.
Bannañje (1974b: 181) prefers the reading
Avantī in place of svāmya.
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The above two verses prescribe the deśāntara corrections (Δ𝑑
𝑠 and Δ𝑑

𝑚) for the
Sun and the Moon. This correction accounts for the time difference (Δ𝑡𝑑 = 𝑡𝑑 ∼
𝑡∘) between the instants of mean sunrise at the observer’s meridian (or at 𝐿′)
and prime meridian (or at 𝐿). The following are the two rules prescribed in the
verses:

Δ𝑑
𝑠 =

adhva × pāpa
arka (vilipti) = Δ𝑑 × 11

10 (sec) (34)

Δ𝑑
𝑚 = adhva × anarka

sānubhū (lipti) = Δ𝑑 × 100
407 (min), (35)

where adhva (Δ𝑑) refers to the distance in yojanas between the longitudes of the
prime meridian and the observer’s meridian along the equator.

The mean longitudes (𝜃𝑑𝑠 and 𝜃𝑑𝑚) of the Sun and the Moon, at the instant
(𝑡𝑑) of mean sunrise for an observer on the equator (𝐿′), Δ𝑑 yojanas (east or west)
from Laṅkā (𝐿) as shown in Figure 2, is stated to be:

𝜃𝑑𝑠 = 𝜃∘𝑠 ∓ |Δ𝑑
𝑠 | (36)

𝜃𝑑𝑚 = 𝜃∘𝑚 ∓ |Δ𝑑
𝑚| , (37)

where 𝜃∘𝑠 and 𝜃∘𝑚 are the mean longitudes obtained from (1) and (9) respectively.
The corrections are to be subtracted for locations east of the prime meridian and
added for locations to the west.

6.1 EXPLANATION
Sections 3, 4, and 5 result in the mean longitudes (𝜃∘𝑠, 𝜃∘𝑚, and 𝜃∘𝑚_𝑎𝑝) of the Sun,
Moon, and Moon’s apogee, respectively, at the instant (𝑡∘) of mean sunrise at
Laṅkā (𝐿). Now, their corresponding mean longitudes at the instant (𝑡𝑑) of mean
sunrise at 𝐿′, which is either east or west of Laṅkā (𝐿) by Δ𝑑 yojanas as shown in
Figure 2, have to be determined. The deśāntara correction aims to compute the
time difference (Δ𝑡𝑑) in the instants (𝑡∘ and 𝑡𝑑) of mean sunrise between the prime
meridian and the observer’s meridian, and further obtain the mean longitude of
the planet (𝑝)79 at the instant (𝑡𝑑) of mean sunrise at the observer’s meridian (or
at 𝐿′).

The rationale for this correction can be understood with the help of Figure 6,
which is similar to Figure 4 and depicts the diurnal motion of the mean Sun
(𝑆).80 Figure 6a depicts a spherical Earth from the viewpoint of the north pole

79 Here, planet (𝑝) could be replaced with
Sun (𝑠), Moon (𝑚) or Moon’s apogee
(𝑚_𝑎𝑝).
80 The direction of the orbital motion of
the mean Sun (𝑆) is always eastwards with

respect to the observer at Laṅkā (𝐿), anti-
clockwise in Figure 4, whereas the diurnal
motion of the mean Sun (𝑆), which happens
because of the rotation of the Earth, is al-
ways westwards, clockwise in Figure 6.
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(𝑃𝑁), showing the prime meridian (PM) and Laṅkā (𝐿). It further depicts two
meridians, which are east and west of the prime meridian (PM), by Δ𝑙 degrees
or Δ𝑑 yojanas along the equator.81 The diurnal motion of the mean Sun, which is
always westwards, is indicated by the positions of the mean Sun 𝑆1, 𝑆2 and 𝑆3 at
the time instants 𝑡1, 𝑡2 and 𝑡3 respectively, where 𝑡1 < 𝑡2 < 𝑡3. The corresponding
fictitious bodies 𝑆−901 , 𝑆−902 and 𝑆−903 are also depicted in the figure. Figure 6b
presents the same geometry when viewed from the Direction of View (DoV)
shown in Figure 6a.

The time instants 𝑡1, 𝑡2 = 𝑡∘, and 𝑡3 indicate the instants of mean sunrise for the
meridians east of PM, prime meridian, and west of PM, respectively. Thus, the
corresponding fictitious bodies 𝑆−901 , 𝑆−902 and 𝑆−903 are aligned with the meridians
east of PM, prime meridian, and west of PM, respectively.

If Δ𝑡𝑑 = 𝑡𝑑 ∼ 𝑡∘ is the time difference between the instants of mean sunrise
at the observer’s meridian and the prime meridian, the angle traversed by the
planet for the period of Δ𝑡𝑑 is known as deśāntara correction (Δ𝑑

𝑝). As the sunrise
occurs earlier or later at the meridians, which are to the east or west of the PM,
respectively, the correction must be accordingly subtracted or added. Hence, the
mean longitude (𝜃𝑑𝑝) of the planet corrected for deśāntara is given by

𝜃𝑑𝑝 = 𝜃∘𝑝 ∓ |Δ𝑑
𝑝| , (38)

which is equivalent to (36) and (37), the formulae prescribed in the verse, when
the Sun (𝑠) and Moon (𝑚) are substituted for the planet (𝑝) respectively.

In a mean civil day,82 the mean Sun takes 3600 vighaṭikās to cover 360∘ cor-
responding to the circumference (𝐶) of the Earth (successive transits of the me-
ridian). The time, in vighaṭikās, taken by the Sun to transit between two meridians
apart by Δ𝑙 degrees or Δ𝑑 yojanas along the equator will be

Δ𝑡𝑑 = Δ𝑙 × 3600
360∘ (vighaṭikās) = Δ𝑑 × 3600

𝐶 (vighaṭikās). (39)

Thus, the deśāntara correction for the planet (Δ𝑑
𝑝) — the angle traversed by

the planet during the period Δ𝑡𝑑 vighaṭikās — will be83

Δ𝑑
𝑝 =

Δ𝑡𝑑 × 𝜃̇∘𝑝
3600 (min) =

Δ𝑑 × 𝜃̇∘𝑝
𝐶 (min), (40)

81 If 𝐿′𝐸 and 𝐿′𝑊 are the points of intersection
of the equator and the meridians east and
west of prime meridian (𝑃𝑀) respectively,
then 𝐿𝐿′𝐸 = 𝐿𝐿′𝑊 = Δ𝑑 yojanas.
82 1 mean civil day = time between two
successive mean sunrises = 60 ghaṭikās
(nāḍikās) = 3600 vighaṭikās (vināḍikās).
83 See Laghubhāskarīya verses I.31–33,
Shukla (1963: 11–12), Mahābhāskarīya verse

II.10, Shukla (1960: 55), Khaṇḍakhādyaka
verse I.15, Sengupta (1934), Karaṇaratna
verse I.27, Shukla (1979: 20), Laghumānasa
verse IV.3, Shukla (1990: 140), Śiṣyadhī-
vṛddhidatantra verses I.44–45, Chatterjee
(1981: 31). Also see Tantrasaṅgraha sec-
tion I.14, Ramasubramanian and Sriram
(2011: 40–43).
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Figure 6: (a) A diagram showing the diurnal motion of the mean Sun, indicating
the positions of the mean Sun 𝑆1, 𝑆2 and 𝑆3 at the instants of mean sunrise at
meridians east of prime meridian (PM), PM and west of PM respectively and
(b) A diagram when viewed from the Direction of View (DoV).
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where 𝜃̇∘𝑝 is the mean rate of motion of the planet in min/day.
As evident from (40), the deśāntara correction requires the knowledge of the

circumference of the Earth (𝐶), which is not stated in Tithinirṇaya. However, it
can be inferred by comparing the deśāntara correction given in the verse for the
Moon with the derived expression, i.e., comparing (40) and (35) and employing
(16), we have

Δ𝑑 × 𝜃̇𝑐𝑚
𝐶 = Δ𝑑 × 100

407 ⟹ 𝐶 ≈ 3217.6 (yojanas). (41)

Further, considering the deśāntara correction for the Sun, comparing (40) and
(34) and employing (41), we have

Δ𝑑 × 𝜃̇∘𝑠
𝐶 = Δ𝑑 × 11

10 × 60 ⟹ 𝜃̇∘𝑠 ≈ 58.99 (min/day), (42)

which is approximately equal to 𝜃∘𝑠 in (4).84

Bannañje (1974b: 182) and Vyāsadāsa (2007: 15) consider the Earth’s circum-
ference (𝐶) to be 3300 yojanas,85 which results in the mean rates of motion (𝜃̇∘𝑠
and 𝜃̇𝑐𝑚) of the Sun and the Moon to be approximately 60.5 (min/day) and 810.8
(min/day) respectively. Recognizing that these values are significantly differ-
ent from (4) and (16), Bannañje (1974b: 182) suggests that the divisor in (35)
be taken as 417, by reading sānubhū as sānyabhū in verse 7, which would yield
the Moon’s mean rate of motion to be ≈ 791.36 (min/day), which is closer to
the rate in (16). However, Bannañje (1974b: 182) does not address the error in
the Sun’s mean rate of motion when considering the Earth’s circumference to be
3300 yojanas. Thus, from the analysis, considering the circumference of the Earth
(𝐶) to be ≈ 3218 yojanas reduces the error of computing the deśāntara correction
significantly.

It is worth noting that this text has not addressed the deśāntara correction for
the Moon’s apogee. The deśāntara correction (Δ𝑑

𝑚_𝑎𝑝) for the Moon’s apogee is
obtained by substituting (28), the mean rate of motion (𝜃̇𝑐𝑚_𝑎𝑝) of the Moon’s
apogee, in (40).

84 Alternatively, first comparing the
deśāntara correction for the Sun, i.e., com-
paring (40) and (34) and employing (4),
the Earth’s circumference (C) is computed
to be 3225.6 yojanas. Further comparing
the deśāntara correction for the Moon, i.e.,
comparing (40) and (35) and employing
𝐶 = 3225.6 yojanas, we obtain 𝜃̇𝑐

𝑚 = 792.53

(min/day), which is off from (16) by
≈ 2(min/day).
85 See Laghubhāskarīya verse I.24, Shukla
(1963: 8), Śiṣyadhīvṛddhidatantra verse I.43,
Chatterjee (1981: 29), and Tantrasaṅgraha
verse I.29, Ramasubramanian and Sriram
(2011: 40–41). Also see Shukla (1960: 50–
51).
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Figure 7: The diagrams depicting the mean longitudes of the Sun, 𝜃∘𝑠 and 𝜃𝑑𝑠 ,
before and after deśāntara correction respectively for the meridians (a) east of
PM and (b) west of PM.
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As the motion of the Moon’s apogee, given by (28), is relatively slow (𝜃̇𝑐𝑚_𝑎𝑝 ≈
6.681 min/day), its corresponding deśāntara correction (Δ𝑑

𝑚_𝑎𝑝) is small, and thus
probably neglected by the author.

The geometrical implication of the deśāntara correction for the Sun is depicted
in Figure 7. This figure depicts the deśāntara corrected Sun (𝜃𝑑𝑠) at mean sunrise
at the observer’s meridian, which is either east or west of the prime meridian by
Δ𝑙 degrees or Δ𝑑 yojanas. Figures 7a and 7b are similar to Figure 6a and depict
the instants of mean sunrise for meridians east and west of the prime meridian,
respectively. If 𝑀1, 𝑀2, and 𝑀3 are the successive positions of meṣādi, during
the diurnal motion, at time instants 𝑡1, 𝑡2, and 𝑡3 respectively, and 𝑀2𝑂̂𝑆2 = 𝜃∘𝑠 is
the mean longitude of the Sun at the instant (𝑡∘) of mean sunrise at Laṅkā (𝐿),
then the mean longitudes of the Sun (𝜃𝑑𝑠) at the instant (𝑡𝑑 = 𝑡1 and 𝑡3) of mean
sunrise at 𝐿′𝐸 and 𝐿′𝑊 are indicated by 𝑀1𝑂̂𝑆1 and 𝑀3𝑂̂𝑆3 in Figures 7a and 7b
respectively.

7 SUN’S APOGEE AND BHUJĀNTARA CORRECTION: TO
OBTAIN MEAN LONGITUDES AT TRUE SUNRISE AT THE

OBSERVER’S MERIDIAN

अकर् दोжार्फलाНुद्धात् यथाऽक͐ तҽलात् तथा ।86

गोϝाद् िद׬प्रजा֥ां िविलղा िलղा इना֏योः ॥ ८ ॥87

देशदोः शुद्धये दान̠क्षؑु֥ां िवर्िलिղकाःुظ ।88

उЛं सूयर्ظ िनयतं दु؋ाئी-भागराशयः ॥ ९ ॥ 89 ॥ अनुटभु ॥् 
arkadorjyāphalācchuddhāt yathā’rke tatphalāt tathā |
goghnād divyaprajābhyāṃ viliptā liptā inābjayoḥ || 8 ||
deśadoḥśuddhaye dānakṣiṣṇubhyāṃ syurviliptikāḥ |
uccaṃ sūryasya niyataṃ duṣṭāstrī-bhāgarāśayaḥ || 9 || || anuṣṭubh ||
As in the case of the [manda corrected] Sun [obtained] from correct-
ing [the deśāntara corrected Sun] for the Sun’s equation of center
(arkadorjyāphala), similarly, from that result (Sun’s equation of
center) multiplied by go (3) and divided by divya (18) and praja (82)

86 Bhikṣu (n.d.) has the reading अकर्दोजा र्फ-
लालधं यथाके तफलम ्..।
87 Bannañje (1974b: 182) notes that the
alternate readings िदयपजायां िलितकािलत
इनाजयोः and िविलता िलत इनाजयोः are scribal
errors. Bhikṣu (n.d.) has the reading गोनं
िदयपजानायाम ्..।
88 Bannañje (1974b: 183) notes the altern-
ate readings: दशेयोः शुधय,े दशेदोः शचुय,े and
दानिक्षणुयाम ्but states the verse 9(a,b) to

be unclear. Instead of दानिक्षणुयाम ्, he pro-
poses दानिवणुयाम।् Vyāsadāsa (2007: 13)
proposes दानिक्षणुयाम ्and discusses its ety-
mology. Bhikṣu (n.d.) has the reading दशे-
योः शुधय े दानिवणुयाम ्..।
89 Bannañje (1974b: 183) notes दृटा ी as an
alternate reading and भागनाशयोः as a scribal
error. Bhikṣu (n.d.) has the reading दृट े शी
भाग े राशयः।
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[the bhujāntara correction] in seconds (viliptis) and minutes (liptis)
of the Sun and the Moon [respectively] are obtained by addition and
subtraction [to the deśāntara corrected Sun and Moon] for the cor-
rection of true sunrise at the location.90 The Sun’s apogee (sūryasya
uccaṃ) is always duṣṭāstrī (2–18) signs-degrees (i.e., 2; 18, 0, 0).

Verse 9(c,d) states that the longitude of the Sun’s apogee (𝜃𝑠_𝑎𝑝) is assumed
constant and given to be91

𝜃𝑠_𝑎𝑝 = duṣṭāstrī = 2; 18, 0, 0 = 78∘. (43)

The verses 8, 9(a,b) prescribe the bhujāntara corrections (𝑑Δ𝑏
𝑠 and 𝑑Δ𝑏

𝑚) for
the deśāntara corrected mean Sun (𝜃𝑑𝑠) and mean Moon (𝜃𝑑𝑚). This correction
accounts for the time difference (Δ𝑡𝑏 = 𝑡𝑏 ∼ 𝑡𝑑) between the instants of the true
and mean sunrise at 𝐿′, and results in the mean Sun (𝑑𝜃𝑏𝑠) and the mean Moon
(𝑑𝜃𝑏𝑚) at the instant (𝑡𝑏) of true sunrise at 𝐿′. To this end, the following rules are
prescribed in the above verses:92

𝑑𝜃𝑏𝑠 = 𝜃𝑑𝑠 ± |𝑑Δ𝑏
𝑠| = 𝜃𝑑𝑠 ± |arkadorjyāphala × go

divya | (in vilipti)

= 𝜃𝑑𝑠 ± |𝑑Δ𝑚
𝑠 × 3

18| (in sec) (44)

𝑑𝜃𝑏𝑚 = 𝜃𝑑𝑚 ± |𝑑Δ𝑏
𝑚| = 𝜃𝑑𝑚 ± |arkadorjyāphala × go

praja | (in lipti)

= 𝜃𝑑𝑚 ± |𝑑Δ𝑚
𝑠 × 3

82| (in min), (45)

where 𝜃𝑑𝑠 and 𝜃𝑑𝑚 are the values obtained from (36) and (37) respectively and
𝑑Δ𝑚

𝑠 is the deśāntara corrected Sun’s equation of center. The verses further state
that the sign of the above corrections is the same as the sign employed in the
manda correction of the Sun.

90 The additional word viliptikāḥ seems to
be redundant in the verse.
91 See Āryabhaṭīya verse 9 in the Gītikā
chapter, Shukla and Sarma (1976: 19),
Laghubhāskarīya verse I.22, Shukla (1963: 7),
Mahābhāskarīya verses VII.11–12, Shukla
(1960: 206), Karaṇaratna verse I.10, Shukla
(1979: 6), Śiṣyadhīvṛddhidatantra verse II.9,

Chatterjee (1981: 35), and Tantrasaṅgraha
verse I.40, Ramasubramanian and Sriram
(2011: 46).
92 The same expressions of the correction
term for the Sun and Moon could be ob-
served in Laghubhāskarīya verse II.5, Shukla
(1963: 19).
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Figure 8: A diagram showing the deśāntara corrected Sun (𝑆𝑑), its apogee (𝑈),
and its 𝑆−90𝑑 at the instant (𝑡𝑑) of mean sunrise at 𝐿′.

7.1 EXPLANATION
Up to this point, from (36), (37), (43) and (23), we have computed the deśāntara
corrected mean longitudes of the Sun (𝜃𝑑𝑠) and the Moon (𝜃𝑑𝑚) and their respect-
ive apogees (𝜃𝑠_𝑎𝑝 and 𝜃∘𝑚_𝑎𝑝) at the instant (𝑡𝑑) of mean sunrise at 𝐿′. All these
longitudes are measured with respect to an observer positioned at the center of
their respective orbits.93 In fact, the prefix ‘mean’ to any parameter indicates its
measure with respect to the observer positioned at the center of the orbit. How-
ever, as the apogee is the farthest point in the orbit, the true observer cannot be
located at the center, but at a point further along the line joining the apogee and
the center. For example, for the Sun, the above geometry can be understood with
the help of Figure 8. This figure is similar to Figure 7 and depicts the deśāntara
corrected Sun (𝑆𝑑) and its apogee (𝑈) orbiting in the ecliptic. Their mean longit-
udes, measured with respect to the observer at the center (𝑂) of the ecliptic, are

93 The orbits of the apogees of the Sun
and the Moon are considered to be the or-

bits of the Sun and the Moon themselves
respectively.
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Figure 9: A diagram showing the effect of the shift in the observer from the mean
position (𝑂) to the true position (𝑂′) at the instant (𝑡𝑑) of mean sunrise at 𝐿′.

given by 𝑀𝑂̂𝑆𝑑 = 𝜃𝑑𝑠 and 𝑀𝑂̂𝑈 = 𝜃𝑠_𝑎𝑝 respectively. Further, the observer’s me-
ridian is aligned with 𝑆−90𝑑 indicating the instant of mean sunrise at 𝐿′. Now, the
true observer is located at 𝑂′, at a distance of 𝑂𝑂′ = 𝑟𝑑 in the direction opposite
to the apogee (𝑈) from the center of the orbit.

The effect of the true observer being positioned at 𝑂′ is explained with the
help of Figure 9, which depicts the Earth to be now centered at 𝑂′. At the instant
of mean sunrise at 𝐿′, the true observer at 𝑂′ views the deśāntara corrected Sun
(𝑆𝑑) at an angle 𝑀𝑂̂′𝑆𝑑 = 𝑑𝜃𝑚𝑠 , which is the true longitude of the Sun (𝑆𝑑), situ-
ated at a distance 𝑂′𝑆𝑑 = 𝐾𝑑, known as manda-karṇa. The true observer at 𝑂′ also
views the observer’s meridian not aligned with 𝑆−90𝑑 , indicating that this is not the
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Figure 10: A diagram showing the apparent shift in the position of the Sun (𝑆𝑑)
from the horizon due to shift in the position of the observer from 𝑂 to 𝑂′.

instant of sunrise. As we are interested in the instant of true sunrise, where the
prefix ’true’ indicates its measure with respect to the true observer (𝑂′), the time
difference (Δ𝑡𝑏) between the instant of mean and true sunrise has to be determ-
ined. To compute this difference, consider two fictitious bodies 𝑆′𝑑 and 𝑆′−90𝑑 in an
orbit (kakṣyāmaṇḍala) centered at 𝑂′, having the same radius (𝑂′𝑆′𝑑 = 𝑂𝑆𝑑 = 𝑅)
as the ecliptic. Let 𝑆′𝑑 have the same longitude as the deśāntara corrected Sun, i.e.,
𝑀𝑂̂′𝑆′𝑑 = 𝜃𝑑𝑠 , which implies that its 𝑆′−90𝑑 is aligned with the meridian of the true
observer. From the geometry, the true longitude (𝑑𝜃𝑚𝑠 ) of the deśāntara corrected
Sun (𝑆𝑑) at the instant (𝑡𝑑) of mean sunrise at 𝐿′ is computed to be

𝑑𝜃𝑚𝑠 = 𝑀𝑂̂′𝑆𝑑 = 𝑀𝑂̂′𝑆′𝑑 − 𝑆𝑑𝑂̂′𝑆′𝑑 (46)
= 𝜃𝑑𝑠 − 𝑑Δ𝑚

𝑠 ,

where 𝑑Δ𝑚
𝑠 is the equation of center for the deśāntara corrected Sun (𝑆𝑑).94

94 See (61) for the expression of the equation
of center.
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Further, the misalignment of 𝑆−90𝑑 with the observer’s meridian, due to the ob-
server’s shift from 𝑂 to 𝑂′, indicated by 𝑆′−90𝑑 𝑂̂′𝑆−90𝑑 , is also observed to be 𝑑Δ𝑚

𝑠 .95

This misalignment of 𝑆−90𝑑 with the observer’s meridian can be better perceived
with the help of Figure 10. This figure depicts a celestial sphere with the true
observer (𝑂′) at its center, having the same geometry as Figure 9 when viewed
from the indicated Direction of View (DoV).96 At the instant (𝑡𝑑) of mean sunrise
at 𝐿′, the position of 𝑆−90𝑑 is observed to be away from the observer’s meridian by
𝑍𝐿′𝑂̂′𝑆−90𝑑 = 𝑑Δ𝑚

𝑠 , which implies that the Sun (𝑆𝑑) is displaced from the horizon
by 𝐸𝑂̂′𝑆𝑑 = 𝑑Δ𝑚

𝑠 , thus indicating the Sun (𝑆𝑑) has already risen. As we are inter-
ested in the instant (𝑡𝑏) of true sunrise, one should travel back in time to observe
the Sun at the horizon. This can be approximately97 achieved by fixing the posi-
tion of the Sun (𝑆𝑑) and rotating98 the Earth by 𝑑Δ𝑚

𝑠 (clockwise in Figure 9) such
that the observer’s meridian aligns with 𝑆−90𝑑 .99 If Δ𝑡𝑏 is the sidereal time taken
for the rotation of the Earth by 𝑑Δ𝑚

𝑠 , which is the time difference (𝑡𝑏 ∼ 𝑡𝑑) between
the instants of true and mean sunrise at 𝐿′, the angle traversed by the planet in
this time interval is known as the bhujāntara correction (Δ𝑏

𝑝) of the planet. As the
Earth rotates 360∘ or 21600′ in a sidereal day, the time taken by the Earth to rotate
by 𝑑Δ𝑚

𝑠 (min) will be

Δ𝑡𝑏 =
𝑑Δ𝑚

𝑠
21600′ (sidereal day). (47)

Thus, the bhujāntara correction (Δ𝑏
𝑝) of the planet — the angle (Δ𝑏

𝑝), in
minutes, traversed by the planet in the time interval Δ𝑡𝑏 — will be100

Δ𝑏
𝑝 = Δ𝑡𝑏 × 𝜃̇𝑝 =

𝑑Δ𝑚
𝑠

21600′ × 𝜃̇𝑝 (min), (48)

where 𝜃̇𝑝 is the rate of motion of the planet in min/day.101 In what follows, we
discuss the application of (48) in obtaining the true longitudes of planets at true
sunrise at 𝐿′.

There can be two possible approaches, where the bhujāntara correction could
be applied before or after the manda correction. In this work, we employ the
notations 𝑏𝜃𝑚𝑠 and 𝑚𝜃𝑏𝑠 to denote the true longitude of the Sun at the instant of

95 As the angle between perpendiculars are
equal, 𝑆′−90𝑑 𝑂̂′𝑆−90𝑑 = 𝑆𝑑𝑂̂′𝑆′𝑑 = 𝑑Δ𝑚

𝑠 .
96 Like Figure 3a presents the same geo-
metry as Figure 4a.
97 See Section 7.1.4 for our discussion on
approximation.
98 To go back in time to the instant of sun-
rise, we need to adjust for the diurnal mo-
tion of the true Sun. Here, we achieve it by
rotating the Earth instead.

99 The alignment of observer’s meridian
with 𝑆−90𝑑 after the sidereal rotation of the
Earth by 𝑑Δ𝑚

𝑠 is shown in Figure 11.
100 See Laghubhāskarīya verses II.4, 22,
Shukla (1963: 18–19,28), Mahābhāskarīya
verses IV.7, 24, 29–30, Shukla (1960: 114,
126–127,129), Śiṣyadhīvṛddhidatantra verse
II.16, Chatterjee (1981: 37–38).
101 Strictly speaking, the units of the rate of
motion should be in min/sidereal day.

HISTORY OF SCIENCE IN SOUTH ASIA 13 (2025) 50–152



88 TITHINIRṆAYA: A CALENDRICAL TEXT

Earth

Eq
ua

to
r

𝑂′

𝑂

meṣādi (𝑀)

meṣādi (𝑀)

𝐾

𝜃𝑠_𝑎𝑝
𝑑𝜃𝑏𝑠

𝜃𝑑𝑠

𝑑 Δ𝑏𝑠

𝑚 Δ
𝑏 𝑠

𝑑𝜃𝑚𝑠

𝑏 𝜃
𝑚 𝑠

𝑚 𝜃
𝑏 𝑠

𝑑Δ 𝑚𝑠

Ecliptic

𝑆𝑑

𝑆𝑏

𝑆−90𝑑

𝑆−90𝑏

Obs. Merid
ian

𝐿′

apogee (𝑈)

Figure 11: A diagram showing the motion of the Sun from 𝑆𝑑 to 𝑆𝑏 during the
sidereal rotation of the Earth by 𝑑Δ𝑚

𝑠 .

true sunrise at 𝐿′,102 obtained from the former and later approaches respectively.
Both these approaches, in the case of the Sun, can be understood with the help
of Figure 11. This figure, which is similar to Figure 9, depicts a spherical Earth,
which has been rotated by 𝑑Δ𝑚

𝑠 to align the observer’s meridian with 𝑆−90𝑑 . During
the time of rotation (Δ𝑡𝑏), the Sun has moved in its orbit to a new position 𝑆𝑏
indicated by 𝑀𝑂̂𝑆𝑏 = 𝑑𝜃𝑏𝑠 and 𝑀𝑂̂′𝑆𝑏 = 𝑚𝜃𝑏𝑠 , with respect to observers at 𝑂 and
𝑂′ respectively. The two quantities 𝑑𝜃𝑏𝑠 and 𝑚𝜃𝑏𝑠 represent the mean and true
longitudes of the bhujāntara corrected Sun (𝑆𝑏) at true sunrise at 𝐿′. Section 7.1.1

102 Note that 𝑏𝜃𝑚
𝑠 = 𝑚𝜃𝑏

𝑠 . See Section 1.6.3
for understanding the conventions used for

symbols.
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discusses the computation of the true longitude (𝑚𝜃𝑏𝑠) of the Sun by applying
the bhujāntara correction to the manda corrected true Sun (𝑑𝜃𝑚𝑠 ). Section 7.1.2
discusses the computation of the true longitude (𝑏𝜃𝑚𝑠 ) of the Sun by applying
the manda correction to the bhujāntara corrected mean Sun (𝑑𝜃𝑏𝑠), which is the
method found in Tithinirṇaya.

7.1.1 The bhujāntara correction applied after manda correction
Having known from (46) the true longitude (𝑑𝜃𝑚𝑠 ) of the deśāntara corrected Sun
(𝑆𝑑) at the instant (𝑡𝑑) of mean sunrise at 𝐿′, indicated by 𝑀𝑂̂′𝑆𝑑 in Figure 11,
the true longitude (𝑚𝜃𝑏𝑠) of the Sun (𝑆𝑏) at the instant (𝑡𝑏) of true sunrise at 𝐿′ is
obtained by applying the bhujāntara correction in the following manner:103

𝑚𝜃𝑏𝑠 = 𝑀𝑂̂′𝑆𝑏 = 𝑀𝑂̂′𝑆𝑑 − 𝑆𝑑𝑂̂′𝑆𝑏
= 𝑑𝜃𝑚𝑠 − 𝑚Δ𝑏

𝑠. (49)

Here, 𝑚Δ𝑏
𝑠 is the true bhujāntara correction of the Sun which is obtained from

(48) as follows:
𝑚Δ𝑏

𝑠 =
𝑑Δ𝑚

𝑠
21600′ × 𝜃̇𝑡𝑠 (min), (50)

where 𝜃̇𝑡𝑠 represents the true rate of motion of the Sun in min/civil day,104 as
observed from 𝑂′. The bhujāntara correction is applied in a similar manner for
the Moon and other planets.

7.1.2 The bhujāntara correction applied before manda correction
Having known from (36) the mean longitude (𝜃𝑑𝑠) of the deśāntara corrected Sun
at the instant (𝑡𝑑) of mean sunrise at 𝐿′, indicated by𝑀𝑂̂𝑆𝑑 in Figure 11, the mean
longitude (𝑑𝜃𝑏𝑠) of the Sun (𝑆𝑏) at the instant (𝑡𝑏) of true sunrise at 𝐿′ is obtained
by applying the bhujāntara correction in the following manner:105

𝑑𝜃𝑏𝑠 = 𝑀𝑂̂𝑆𝑏 = 𝑀𝑂̂𝑆𝑑 − 𝑆𝑑𝑂̂𝑆𝑏
= 𝜃𝑑𝑠 − 𝑑Δ𝑏

𝑠. (51)

Here, 𝑑Δ𝑏
𝑠 is the mean bhujāntara correction of the Sun which is obtained from

(48) as follows:
𝑑Δ𝑏

𝑠 =
𝑑Δ𝑚

𝑠
21600′ × 𝜃̇∘𝑠 (min), (52)

103 See Mahābhāskarīya verse IV.24, Sastri
(1957: XC), and Apte (1945: 44).
104 See Section 14.1.6 for our discussion on
the true rate of motion of the planets. As
already noted in footnote 101, strictly speak-
ing, the units should be in min/sidereal

day. However, we have approximated to
min/civil day for convenience.
105 See Mahābhāskarīya verse IV.7, Sastri
(1957: LXXXVIII), Apte (1945: 40), and
Laghubhāskarīya verses II.4–5, Shukla
(1963: 18–19).
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where 𝜃̇∘𝑠 represents the mean rate of motion of the Sun in min/civil day,106 as
observed from 𝑂, and obtained from (4). Employing (4) in (52), we have

𝑑Δ𝑏
𝑠 = 𝑑Δ𝑚

𝑠 × 59.136 × 60
21600 ≈ 𝑑Δ𝑚

𝑠 × 3
18 (sec), (53)

which is equivalent to the correction term in (44).
Similarly, (51) and (52) can be extended to the Moon. The mean longitude

(𝑑𝜃𝑏𝑚) of the Moon at the instant (𝑡𝑏) of true sunrise at 𝐿′ is obtained by applying
bhujāntara correction in the following manner:

𝑑𝜃𝑏𝑚 = 𝜃𝑑𝑚 − 𝑑Δ𝑏
𝑚, (54)

where 𝜃𝑑𝑚 is the mean longitude of the deśāntara corrected Moon, obtained from
(37). Here, 𝑑Δ𝑏

𝑚 is the mean bhujāntara correction of the Moon which is obtained
from (48) as follows:

𝑑Δ𝑏
𝑚 =

𝑑Δ𝑚
𝑠

21600′ × 𝜃̇𝑐𝑚 (min), (55)

where 𝜃̇𝑐𝑚 represents the corrected mean rate of motion of the Moon in min/civil
day,107 obtained from (16). Employing (16) in (55), we have

𝑑Δ𝑏
𝑚 = 𝑑Δ𝑚

𝑠 × 790.581
21600 ≈ 𝑑Δ𝑚

𝑠 × 3
82 (min), (56)

which is equivalent to the correction term in (45).
Thus, from (53) and (56), we obtain the mean bhujāntara correction of the

Sun and the Moon, as stated in verses 8 and 9 of the Tithinirṇaya. Applying this
correction, as indicated in (44) and (45), results in the mean longitudes of the
Sun and the Moon, respectively, at the instant (𝑡𝑏) of true sunrise at 𝐿′. One final
correction, known as manda, is further applied to obtain the true longitudes (𝑏𝜃𝑚𝑠
and 𝑏𝜃𝑚𝑚) of the Sun and the Moon at true sunrise at 𝐿′. The computation and
application of this correction are given in verse 15 of Tithinirṇaya, discussed in
Section 11. The application of the manda correction to the bhujāntara corrected
mean Sun (𝑀𝑂̂𝑆𝑏 = 𝑑𝜃𝑏𝑠) results in the true longitude (𝑀𝑂̂′𝑆𝑏 = 𝑏𝜃𝑚𝑠 ) of the Sun
at true sunrise at 𝐿′, which is same as 𝑀𝑂̂′𝑆𝑏 = 𝑚𝜃𝑏𝑠 , obtained from (49). Thus,
both the approaches, explained in Sections 7.1.1 and 7.1.2, give the same result.
Similar to the rationale mentioned in deśāntara-correction, the effect of bhujāntara
is neglected for Moon’s apogee.

106 Strictly speaking, the units of the rate of
motion should be in min/sidereal day.

107 Strictly speaking, the units of the rate of
motion should be in min/sidereal day.
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Figure 12: Diagrams showing the rotation of the Earth backward (clockwise) and
forward (anticlockwise) in time to arrive at the instant (𝑡𝑏) of the true sunrise at
𝐿′ for those positions of the Sun (𝑆𝑑), whose kendra (𝑘 = 𝜃𝑑𝑠 − 𝜃𝑠_𝑎𝑝) or anomaly
is in (a) first quadrant (b) second quadrant (c) third quadrant, and (d) fourth
quadrant.
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7.1.3 Sign of the bhujāntara correction
Now, as we understand that the bhujāntara correction is done to compute the
mean (or true) longitudes of the planets (𝑝) at the instant (𝑡𝑏) of true sunrise
at 𝐿′, the sign of the bhujāntara correction depends on whether the Earth’s rota-
tion is performed forward or back in time, to align the observer’s meridian with
the fictional body 𝑆−90𝑑 . When the observer at 𝑂′ observes the Sun 𝑆𝑑 above the
horizon, then the Earth has to be rotated back in time, and the bhujāntara correc-
tion should be subtracted. On the other hand, if the sunrise has not yet occurred
for the observer at 𝑂′, then the Earth has to be rotated forward in time, and the
bhujāntara correction should be added. The sign of the bhujāntara correction can
be understood with the help of Figure 12, which is similar to Figure 9, and de-
picts the Sun (𝑆𝑑) in different quadrants with respect to its apogee (𝑈) at the
instant (𝑡𝑑) of mean sunrise at 𝐿′. In other words, the figure depicts the anomaly
or kendra (𝑘 = 𝜃𝑑𝑠 − 𝜃𝑠_𝑎𝑝) of the Sun in four different quadrants. It is observed
from Figures 12a and 12b that, when the deśāntara corrected Sun’s (𝑆𝑑) kendra is in
the first and second quadrants respectively, i.e., 0∘ ≤ 𝜃𝑑𝑠 − 𝜃𝑠_𝑎𝑝 ≤ 180∘, the Earth
has to be rotated back in time (clockwise) to align the observer’s meridian with
𝑆−90𝑑 , and thus the bhujāntara correction should be subtracted. These two figures
correspond to the situation depicted in Figure 10. Similarly, it is observed from
Figures 12c and 12d that, when the kendra is in the third and fourth quadrants
respectively, i.e., 180∘ ≤ 𝜃𝑑𝑠 − 𝜃𝑠_𝑎𝑝 ≤ 360∘, the Earth has to be rotated forward
in time (anti-clockwise), and thus the bhujāntara correction should be added. In
these two cases, the observer at 𝑂′ in Figure 10 would not yet have witnessed
sunrise. As will be discussed in Section 11.1, the sign of the manda correction of
the Sun is also negative when its anomaly is in the first and second quadrants
and positive in the third and fourth quadrants. Thus, we find correspondence
between the signs of the bhujāntara correction and manda correction of the Sun,
which substantiates the statement in verse 8(a,b).

7.1.4 Approximation of true sunrise
The bhujāntara correction of the Sun results in the movement of the Sun from 𝑆𝑑
to 𝑆𝑏 on the ecliptic by a magnitude of 𝑚Δ𝑏

𝑠 with respect to observer at 𝑂′, as
shown in Figure 11. Thus, the Sun’s fictional counterpart also moves from 𝑆−90𝑑
to 𝑆−90𝑏 , which however is not aligned with the observer’s meridian, indicating
that the bhujāntara corrected Sun (𝑆𝑏) does not correspond to the instant of true
sunrise, by a magnitude of 𝑆−90𝑑 𝑂̂′𝑆−90𝑏 = 𝑆𝑑𝑂̂′𝑆𝑏 = 𝑚Δ𝑏

𝑠. This error was perhaps
considered small. Possibly, a second iteration of the bhujāntara correction, in-
volving rotating the Earth further by 𝑚Δ𝑏

𝑠, could result in an even more precise
estimation of the instant of true sunrise at 𝐿′, if required.

HISTORY OF SCIENCE IN SOUTH ASIA 13 (2025) 50–152



94 TITHINIRṆAYA: A CALENDRICAL TEXT

7.1.5 Anomalies in the interpretation of the sequence of bhujāntara and manda
corrections

Following our discussion in Sections 7.1.1 and 7.1.2 it is apparent that the
bhujāntara correction should be performed after the manda correction only if the
true rate of motion of the planet is known. Otherwise, the bhujāntara correction
should be performed before the manda correction. The true rate of motion of
the planet varies from instant to instant whereas the mean rate of motion of
the planet is always constant and known from the Āryabhaṭīya parameters of a
mahāyuga. As the bhujāntara corrections for the Sun and the Moon proposed in
the Tithinirṇaya, in (44) and (45) respectively, have constant multipliers and
divisors, it is clear that the text adopts the mean rate of motion of the planets for
computation as discussed in Section 7.1.2. Thus, this implies that the bhujāntara
correction should always be applied before the manda correction as per the
procedure of the Tithinirṇaya.108 However, in the course of working out an
example, Bannañje (1974b: 186–187) and Vyāsadāsa (2007: 26–31) apply the
bhujāntara correction after manda for the Sun and before manda for the Moon.109

In our opinion, the sequence of corrections in the former case is only valid if the
true rate of motion of the Sun is employed.110

Finally, we would like to note that some texts such as Khaṇḍakhādyaka and
Karaṇaratna apply the bhujāntara correction for the Moon but not for the Sun.111

This results in approximating the true longitude of the Sun at the instant of true
sunrise.

8 RSINE VALUES OF 24 ARCS
शरीरनुत् धीभवनः कथнनो
नळ̣जनो मानपटुः शुकालपः । 112

िनरामयो धीः प̠थको नृपा̠धको
बुधोनरः सुղखरः कलािवराट् ॥ १० ॥ 113

108 Even verse 22(a,b) of Tithinirṇaya states
that the deśāntara and bhujāntara corrections
are applied to the mean planet.
109 The same sequence is proposed by K. S.
Shukla while commenting Laghubhāskarīya,
Shukla (1963: 27–28), and Mahābhāskarīya,
Shukla (1960: 129–130).
110 See the commentary of Pṛthūdaka-
svāmin on Brāhmasphuṭasiddhānta verse
II.29, R. S. Sharma (1966: 197), and Param-
eśvara on Mahābhāskarīya verses IV.7, 24,
Apte (1945: 40,44).
111 See Khaṇḍakhādyaka verse I.18, Sengupta
(1934), and Karaṇaratna verse I.26 (b,d),
Shukla (1979: 19–20).

112 Bannañje (1974b: 183) notes an altern-
ate reading शरीररधीभवनः as a scribal error.
Bhikṣu (n.d.) has the readingशरीरनधूंभवनः क-
थचोनो नधीजनो मानपटुः शकुालयः।
113 Bannañje (1974b: 183) notes an altern-
ate reading िनरालयो as a scribal error. He fur-
ther notes that the phrase नपृािधको, which is
not present in the manuscript, has been re-
constructed by him as per the required value
in the Sine Table. Also, he suggests सुतखरः
would match the numeral instead सुतपरः in
the manuscript. Bhikṣu (n.d.) has the read-
ing धीपिथको नयािधको..।
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महाशरो दूरसरो धमीह̟रः
हसԺुरो वेदनगः सुसङ्̧कलः । 114

तमः खगः पारबलं रसोबल̣
धनाविलः कालभृगुजर्गद्भगः ॥ ११ ॥ 115 ॥ वशंथ ॥
इमाײतुिव͂शितжाः टӈायाकर्سु सोमयोः ।
चतुिव͂शितवाΐािन ित्रराशीना̠ममान् िवदुः ॥ १२ ॥ 116 ॥ अनुटभु ॥् 
śarīranut dhībhavanaḥ kathañcano
naḷījano mānapaṭuḥ śukālapaḥ |
nirāmayo dhīḥpathiko nṛpādhiko
budhonaraḥ suptakharaḥ kalāvirāṭ || 10 ||
mahāśaro dūrasaro dhamīhariḥ
hasandhuro vedanagaḥ susaṅkulaḥ |
tamaḥkhagaḥ pārabalaṃ rasobalī
dhanāvaliḥ kālabhṛgurjagadbhagaḥ || 11 || || vaṃśastha ||
imāścaturviṃśatijyāḥ sphuṭatvāyārkasomayoḥ |
caturviṃśativākyāni trirāśīnāmimān viduḥ || 12 || || anuṣṭubh ||
Śarīranut (225), dhībhavana (449), kathañcana (671), naḷījana (890),
mānapaṭu (1105), śukālapa (1315), nirāmaya (1520), dhīḥpathika (1719),
nṛpādhika (1910), budhonara (2093), suptakhara (2267), kalāvirāṭ
(2431), mahāśara (2585), dūrasara (2728), dhamīhari (2859), has-
andhura (2978), vedanaga (3084), susaṅkula (3177), tamaḥkhaga
(3256), pārabala (3321), rasobalī (3372), dhanāvali (3409), kālabhṛgu
(3431), jagadbhaga (3438). [Scholars] knew these 24 Rsine values
of a quadrant (trirāśi) as [stated in the form of] these 24 vākyas for
[obtaining] the trueness (true longitudes) of the Sun and the Moon.

In order to compute the equation of center of a planet, the Rsine of its anomaly
(kendra) has to be determined. Hence, in the above verses, the author gives the
values of twenty-four Rsines in minutes,117 corresponding to the 24 arcs obtained
by dividing the quadrant (3 rāśis) into 24 parts of 225′ each. The Rsine values
stated in the above verses are summarized in Table 4. These Rsine values can

114 Bannañje (1974b: 183) notes an al-
ternate reading वमी ह̟रः as a scribal error.
Bhikṣu (n.d.) has the reading दुरसरो धमाहिरः
हसधरो..।
115 Bannañje (1974b: 183) notes an altern-
ate reading नमःखगः as a scribal error and
the phrase रसोबली, which is not present in
the manuscript was constructed as per the
numeral. Bhikṣu (n.d.) has the reading
रसाबलम।्

116 This half verse is missing in Bhikṣu
(n.d.). Also, the phrase should be इमािन in-
stead of इमान।् This appears to be an incor-
rect usage or exercise of poetic license for
metrical considerations.
117 The circumference of a circle is con-
sidered to be (360∘ × 60 =) 21600′. Hence,
the radius of the circle (R) would be 21600

2𝜋
≈

3438′.
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be obtained by employing the Rsine difference values given by Āryabhaṭa in the
Āryabhaṭīya.118

It is worth noting that verses similar to 10–11 are found in the earlier works
such as Śaṅkaranārāyaṇa’s commentary of Laghubhāskarīya, and in later works
such as Grahaṇamaṇḍana of Parameśvara, and Uparāgakriyākrama of Acyuta
Piṣāraṭi.119

118 See Āryabhaṭīya verse 12 in the Gītikā
chapter, Shukla and Sarma (1976: 29–30).
Also, see Śiṣyadhīvṛddhidatantra verses II.1–4,
Chatterjee (1981: 34).
119 See Śaṅkaranārāyaṇa’s commentary on

Laghubhāskarīya verses II.2–3, S. Jhā (2007),
Grahaṇamaṇḍana verses 25(A,B), Sarma
(1977: 11), Uparāgakriyākrama verses I.19–21,
Piṣāraṭi (n.d.).
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S.No.
Arc

Rsine (in min)
in Tithinirṇaya

computed
𝑥∘𝑦′ minutes phrase value

1 3∘45′ 225 śarīranut 225 224.839
2 7∘30′ 450 dhībhavana 449 448.716
3 11∘15′ 675 kathañcana 671 670.671
4 15∘00′ 900 naḷījana 890 889.754
5 18∘45′ 1125 mānapaṭu 1105 1105.027
6 22∘30′ 1350 śukālapa 1315 1315.569
7 26∘15′ 1575 nirāmaya 1520 1520.476
8 30∘00′ 1800 dhīḥpathika 1719 1718.873
9 33∘45′ 2025 nṛpādhika 1910 1909.910
10 37∘30′ 2250 budhonara 2093 2092.768
11 41∘15′ 2475 suptakhara 2267 2266.664
12 45∘00′ 2700 kalāvirāṭ 2431 2430.854
13 48∘45′ 2925 mahāśara 2585 2584.635
14 52∘30′ 3150 dūrasara 2728 2727.348
15 56∘15′ 3375 dhamīhari 2859 2858.382
16 60∘00′ 3600 hasandhura 2978 2977.176
17 63∘45′ 3825 vedanaga 3084 3083.221
18 67∘30′ 4050 susaṅkula 3177 3176.064
19 71∘15′ 4275 tamaḥkhaga 3256 3255.306
20 75∘00′ 4500 pārabala 3321 3320.608
21 78∘45′ 4725 rasobalī 3372 3371.691
22 82∘30′ 4950 dhanāvali 3409 3408.336
23 86∘15′ 5175 kālabhṛgu 3431 3430.386
24 90∘00′ 5400 jagadbhaga 3438 3437.747

Table 4: Rsine values in minutes given in the Tithinirṇaya.
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9 INTERPOLATION FORMULA FOR OBTAINING THE DESIRED
RSINE

शुभाङ्गप̟रमाणेन यिद жाध͂ न पूयर्ते । 120

वतर्मानжया हӈा मुरा̟रफलसϼहः ॥ १३ ॥ 121 ॥ अनुटभु ॥् 
śubhāṅgaparimāṇena yadi jyārdhaṃ na pūryate |
vartamānajyayā hatvā murāriphalasaṅgrahaḥ || 13 || || anuṣṭubh ||
If [the kendra in minutes] is not exhausted (na pūryate) by [the
multiples of] śubhāṅga (3∘45′ = 225′), having multiplied [the
remaining minutes (kalā-śeṣa)] by the current Rsine [difference]
([śiṣṭa]-vartamānajyā),122 the result upon dividing by murāri (225)
[when] added [to the elapsed Rsine (gata-jyā), is the desired] Rsine
([iṣṭa]-jyārdha).123

The above verse prescribes the following interpolation formula for obtaining
the desired Rsine (iṣṭa-jyā) of the kendra:124

iṣṭa-jyā = gata-jyā + śiṣṭa-vartamānajyā × kalā-śeṣa
murāri . (57)

9.1 EXPLANATION
Given, from Table 4, the Rsine values in minutes for every 225′ interval of kendra,
the Rsine value of any desired kendra which lies within any given interval is
computed with the help of the interpolation formula as follows: If 𝑅 sin(𝑘𝑖) and
𝑅 sin(𝑘𝑖+1) are the Rsine values corresponding to the successive values of kendra,
𝑘𝑖 and 𝑘𝑖+1 respectively, then the desired Rsine (𝑅 sin(𝑘𝑗)) corresponding to 𝑘𝑗,
which lies in between 𝑘𝑖 and 𝑘𝑖+1, is given by:

𝑅 sin(𝑘𝑗) = 𝑅 sin(𝑘𝑖) +
[𝑅 sin(𝑘𝑖+1) − 𝑅 sin(𝑘𝑖)] × 􏿴𝑘𝑗 − 𝑘𝑖􏿷

225 , (58)

which is the same as (57) described in the verse.

120 Bhikṣu (n.d.) has the readingशभुाग that
denotes 225′ and is equivalent to the reading
शभुाग which denotes 3∘45′.
121 Bannañje (1974b: 184) opines that
though all manuscripts contain हवा, it
should be read as िहवा and mentions यिद
याथर्म t्o be scribal error.
122 Vyāsadāsa (2007: 22) notes the use of

śiṣṭa in order to describe the meaning of this
verse.
123 In Indian astronomy, the phrases jyā
(chord) and jyārdha (semi-chord) are used
interchangeably to represent Rsine of an arc.
124 See Śiṣyadhīvṛddhidatantra verse II.12,
Chatterjee (1981: 36).
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10 QUADRANTS OF ECLIPTIC AND BHUJA

रा̠शचकं्र चतुؔादमोजानोजिद्वपादयोः ।
अतीतानागतौ भागौ भुज इӀुХते बुधैः ॥ १४ ॥ 125 ॥ अनुटभु ॥् 
rāśicakraṃ catuṣpādamojānojadvipādayoḥ |
atītānāgatau bhāgau bhuja ityucyate budhaiḥ || 14 || || anuṣṭubh ||
The circle (rāśicakra) of rāśis [consisting] of four quadrants
(catuṣpāda) [is considered]. The [arc in] degrees traversed and
yet to be traversed in the two odd (oja) and even (anoja) quadrants
[respectively] is said to be the bhuja by the intelligent.

The above verse intends to prescribe a method to compute the desired Rsine
of the arcs that belong to different quadrants of a circle. The verse suggests group-
ing the quadrants of a circle, or rāśicakra, into odd (oja) and even (anoja). Further,
the verse introduces the term bhuja, defining it as the angle in degrees traversed
in the odd quadrants and yet to be traversed in the even quadrants. Although
the verse does not explicitly state it, the magnitude of the Rsine of the arc is the
Rsine of bhuja.

10.1 EXPLANATION
Sections 8 and 9 outline a procedure for computing the desired Rsine specifically
for arcs in the first quadrant. This section addresses the process of obtaining the
desired Rsine for arcs in other quadrants. In Indian astronomy, the rāśicakra is
also used to represent degrees in a circle,126 which can be understood with the
help of Figure 13. Figure 13a depicts a circle, where 0∘ is indicated by meṣādi
and each quadrant of the circle is constituted of three rāśis of 30∘ each. These
quadrants, as described in the verse, are grouped into odd (oja) and even (anoja)
quadrants. To compute the Rsines of arcs, which belong to different quadrants,
the verse defines a term named bhuja.127 The bhuja is the angle traversed in the
odd quadrants and the angle yet to be traversed in the even quadrants and can
be understood with the help of Figure 13b.

Figure 13b is similar to Figure 13a and depicts a circle of four quadrants indic-
ated by 𝑄1, 𝑄2, 𝑄3, and 𝑄4. As the application of Rsines in Tithinirṇaya is in the
computation of the equation of center of the Sun and the Moon, the arcs of the

125 Bannañje (1974b: 185) notes अतीतानागतौ
पादौ as an alternate reading.
126 This rāśicakra should not be confused
with the ecliptic with Zodiac signs (rāśis) in
the background.
127 See Laghubhāskarīya verses II.1–2(a,b),

Shukla (1963: 16), Mahābhāskarīya verse
IV.8, Shukla (1960: 115) , Karaṇaratna
verses A.28–29, Shukla (1979: 111), Śiṣya-
dhīvṛddhidatantra verse II.11, Chatterjee
(1981: 36), Laghumānasa verses III.1–2,
Shukla (1990: 120–121).
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Figure 13: (a) A diagram indicating the division of rāśicakra into odd (oja) and
even (anoja) quadrants and (b) A diagram depicting bhuja in each quadrant.
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circle represent the kendras (anomalies) of the Sun and the Moon. The kendras of
the Sun (𝑑𝜃𝑏𝑠 − 𝜃𝑠_𝑎𝑝), obtained from (44) and (43), and the Moon (𝑑𝜃𝑏𝑚 − 𝜃∘𝑚_𝑎𝑝),
obtained from (45) and (23), respectively, could fall in any one of the four quad-
rants of the circle. If 𝑘1, 𝑘2, 𝑘3, and 𝑘4 are the kendras which fall in quadrants
𝑄1, 𝑄2, 𝑄3, and 𝑄4 respectively, then their corresponding bhujas will be 𝑏1 = 𝑘1,
𝑏2 = 180∘ − 𝑘2, 𝑏3 = 𝑘3 − 180∘, and 𝑏4 = 360∘ − 𝑘4 respectively. Further, the desired
Rsine of bhuja, where 0∘ ≤ bhuja ≤ 90∘, is computed from the procedure given
in Sections 8 and 9. It is observed that the magnitude of the Rsine of the kendra
is the same as the Rsine of the bhuja and can be understood from the following
relations:

|𝑅 sin(kendra)| =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

|𝑅 sin(𝑘1)| = 𝑅 sin(𝑏1) , 0∘ ≤ 𝑘1 ≤ 90∘

|𝑅 sin(𝑘2)| = 𝑅 sin(180∘ − 𝑏2) = 𝑅 sin(𝑏2) , 90∘ ≤ 𝑘2 ≤ 180∘

|𝑅 sin(𝑘3)| = |𝑅 sin(180∘ + 𝑏3)| = 𝑅 sin(𝑏3) , 180∘ ≤ 𝑘3 ≤ 270∘

|𝑅 sin(𝑘4)| = |𝑅 sin(360∘ − 𝑏4)| = 𝑅 sin(𝑏4) , 270∘ ≤ 𝑘4 ≤ 360∘

11 MANDA CORRECTION: TO OBTAIN TRUE LONGITUDES AT
TRUE SUNRISE AT THE OBSERVER’S MERIDIAN

ोЛोनाकार्֏योःؼ दोжार् गोसӶां व̠धर्ताः क्रमात् । 128

अजल֔कलाः गोळयोःؼؼ ादृणंظ धनम् ॥ १५ ॥129 ॥ अनुटभु ॥् 
svocconārkābjayoḥ dorjyā gosadbhyāṃ vardhitāḥ kramāt |
ajalabdhakalāḥ svasvagoḷayoḥ syādṛṇaṃ dhanam || 15 || || anuṣṭubh ||
The Rsines, [having the longitudes] of the Sun and the Moon
reduced by their own apogees, are multiplied by go (3) and sad (7)
respectively. The minutes obtained upon dividing by aja (80) shall
be [applied to their mean longitudes] negatively [or] positively in
their (Sun’s and Moon’s) respective hemispheres.130

The above verse prescribes the manda correction (𝑏Δ𝑚
𝑠 and 𝑏Δ𝑚

𝑚), or the equa-
tion of center, for the bhujāntara corrected mean Sun (𝑑𝜃𝑏𝑠) and mean Moon (𝑑𝜃𝑏𝑚),
which is required due to the eccentricity of their respective orbits. This correc-
tion results in the true longitudes of the Sun (𝑏𝜃𝑚𝑠 ) and the Moon (𝑏𝜃𝑚𝑚) at the

128 Bannañje (1974b: 185) notes that the al-
ternate reading सोचोनाका र् is a scribal error.
129 We have considered the reading यादृणं
धनम ्from Bhikṣu (n.d.) whereas Bannañje
(1974b: 185) has the reading सऋणं धनम ्..।
130 In Karaṇaratna verse I.38(a,b), Shukla
(1979: 28), we find that the word gola is used

in the sense of hemisphere, where the north-
ern and southern hemispheres are denoted
by the terms uttara-gola and dakṣiṇa-gola re-
spectively. Each of them corresponds to
the six rāśis beginning from the first point
of Aries (0∘ − 180∘) and Libra (180∘ − 360∘)
respectively.
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instant (𝑡𝑏) of true sunrise at 𝐿′. The following relations are prescribed in the
above verse:131

𝑏𝜃𝑚𝑠 = 𝑑𝜃𝑏𝑠 ∓ |𝑏Δ𝑚
𝑠 | = 𝑑𝜃𝑏𝑠 ∓ | go

aja × 𝑅 sin(𝑑𝜃𝑏𝑠 − 𝜃𝑠_𝑎𝑝)| (in kalā)

= 𝑑𝜃𝑏𝑠 ∓ | 380 × 𝑅 sin(𝑑𝜃𝑏𝑠 − 𝜃𝑠_𝑎𝑝)| (in min) (59)

𝑏𝜃𝑚𝑚 = 𝑑𝜃𝑏𝑚 ∓ |𝑏Δ𝑚
𝑚| = 𝑑𝜃𝑏𝑚 ∓ |sad

aja × 𝑅 sin(𝑑𝜃𝑏𝑚 − 𝜃∘𝑚_𝑎𝑝)| (in kalā)

= 𝑑𝜃𝑏𝑚 ∓ | 780 × 𝑅 sin(𝑑𝜃𝑏𝑚 − 𝜃∘𝑚_𝑎𝑝)| (in min), (60)

where (𝑑𝜃𝑏𝑠 −𝜃𝑠_𝑎𝑝) and (𝑑𝜃𝑏𝑚 −𝜃∘𝑚_𝑎𝑝) are the anomalies (kendras) of the bhujāntara
corrected Sun and Moon respectively. The verse notes that the correction is negat-
ive for those anomalies in the northern hemisphere (first and second quadrants),
and positive for those in the southern hemisphere (third and fourth quadrants).

11.1 EXPLANATION
In Section 7.1, we examined the effects of displacing the true observer (𝑂′) from
the center (𝑂) of the orbit of the Sun. This section generalizes the impact of
displacing the true observer from the center of the orbit of any given planet 𝑃.
The manda correction (equation of center) in Indian astronomy encapsulates this
impact and its geometric rationale can be understood with the help of Figure 14.
This figure depicts a planet (𝑃) orbiting in the grahabhramaṇavṛtta or pratimaṇḍala
(orbit of the planet) with the mean rate of motion (𝜃̇∘𝑝 or 𝜃̇𝑐𝑝).132 The planet’s
orbit is centered at 𝑂, with radius 𝑂𝑃 = 𝑅. The figure also depicts the mean
longitudes of the planet (𝜃𝑝) and its apogee (𝜃𝑝_𝑎𝑝) indicated by 𝑀𝑂̂𝑃 and 𝑀𝑂̂𝑈
respectively.133 Further, consider an observer at 𝑂′,134 at a distance 𝑟 from the
orbit’s center (𝑂) in the direction opposite to the apogee (𝑈). Now, with respect

131 See Laghubhāskarīya verses II.3(c,d)–
4(a,b), Shukla (1963: 18), Mahābhāskarīya
verses IV.4(c,d)–6, Shukla (1960: 110–111),
Śiṣyadhīvṛddhidatantra verse II.14, Chatterjee
(1981: 37), Tantrasaṅgraha verses II.21–22,
35–36, Ramasubramanian and Sriram
(2011: 75–76,89–90).
132 The mean rate of motion is the rate of
motion of the planet (𝑃) with respect to the
observer at orbit’s center (𝑂). The rates of
motion of the Sun (𝜃̇∘

𝑠) and the Moon (𝜃̇𝑐
𝑚)

are obtained from (4) and (16) respectively.
133 Here, in case of the Sun and the Moon,
the mean planet would be the bhujāntara cor-
rected mean Sun (𝑑𝜃𝑏

𝑠) and the bhujāntara
corrected mean Moon (𝑑𝜃𝑏

𝑚), as obtained
from (44) and (45), respectively. The apo-
gees for the Sun and the Moon are 𝜃𝑠_𝑎𝑝
and 𝜃∘

𝑚_𝑎𝑝, as obtained from (43) and (23),
respectively.
134 The Earth is also positioned according
to the position of the observer.
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Figure 14: A diagram showing the manda correction (Δ𝑚
𝑝 ) of a planet (𝑃) due to

the eccentricity (𝑟) of the orbit.

to meṣādi (𝑀), the observer at 𝑂′ views the planet 𝑃 at an angle 𝑀𝑂̂′𝑃 = 𝜃𝑚𝑝 ,
which is the true longitude of the planet, situated at a distance 𝑂′𝑃 = 𝐾, known
as manda-karṇa.

To compute the true longitude of the planet (𝜃𝑚𝑝 ), consider a fictitious mean
planet 𝑃′, orbiting in the kakṣyāmaṇḍala,135 having the mean longitude 𝑀𝑂̂′𝑃′ =

135 A fictitious orbit centered at 𝑂′, having
the same radius (𝑂′𝑃′ = 𝑅) as the prati-

maṇḍala, and displaced from its center by a
distance 𝑂𝑂′ = 𝑃𝑃′ = 𝑟.
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𝜃𝑝. It can be easily seen that the true longitude of the planet (𝜃𝑚𝑝 ) is given by136

𝜃𝑚𝑝 = 𝑀𝑂̂′𝑃 = 𝑀𝑂̂′𝑃′ − 𝑃𝑂̂′𝑃′

= 𝜃𝑝 − Δ𝑚
𝑝

= 𝜃𝑝 − sin−1 􏿵 𝑟
𝐾 × sin(𝜃𝑝 − 𝜃𝑝_𝑎𝑝)􏿸 , (61)

where Δ𝑚
𝑝 and 𝜃𝑝_𝑎𝑝 are the planet’s equation of center and the mean longitude

of the planet’s apogee respectively.
Now, consider the manda correction for the bhujāntara corrected mean Sun

(𝑑𝜃𝑏𝑠) and mean moon (𝑑𝜃𝑏𝑚). Substituting the bhujāntara corrected mean Sun
(𝑑𝜃𝑏𝑠) and mean moon (𝑑𝜃𝑏𝑚) obtained from (44) and (45) in place of the mean
planet (𝜃𝑝) in (61), the Sun’s apogee (𝜃𝑠_𝑎𝑝) and the Moon’s apogee (𝜃∘𝑚_𝑎𝑝) ob-
tained from (43) and (23) in place of the planet’s apogee (𝜃𝑝_𝑎𝑝), and applying
the ratios 𝑟

𝐾 = 𝑟∘
𝑅 for the Sun and the Moon to be 3

80 and 7
80 respectively as per the

Āryabhaṭa school,137 we obtain the true longitudes of the bhujāntara corrected
Sun (𝑏𝜃𝑚𝑠 ) and Moon (𝑏𝜃𝑚𝑚) to be

𝑏𝜃𝑚𝑠 = 𝑑𝜃𝑏𝑠 − 𝑏Δ𝑚
𝑠 = 𝑑𝜃𝑏𝑠 − sin−1 􏿵 3

80 × sin(𝑑𝜃𝑏𝑠 − 𝜃𝑠_𝑎𝑝)􏿸 (62)

𝑏𝜃𝑚𝑚 = 𝑑𝜃𝑏𝑚 − 𝑏Δ𝑚
𝑚 = 𝑑𝜃𝑏𝑚 − sin−1 􏿵 7

80 × sin(𝑑𝜃𝑏𝑚 − 𝜃∘𝑚_𝑎𝑝)􏿸 , (63)

which are equivalent to (59) and (60) respectively. It is evident from (61) that, as
stated in the verse, the sign of the correction is negative for 0∘ < (𝜃𝑝−𝜃𝑝_𝑎𝑝) < 180∘
and positive for 180∘ < (𝜃𝑝 − 𝜃𝑝_𝑎𝑝) < 360∘, because the sine function is positive
in first and second quadrants and negative in third and fourth quadrants.

12 TREPIDATION OF THE EQUINOX

क֒ןौघो धेनुभवो युͿः सौरैवृर्थाफलैः । 138

एतضाՌापतेलर्֔ं रा׻ाद्ययनमुХते ॥ १६ ॥ 139

प्रभारҷं धीसवनं गानتानं जनेधनम् ।

136 See Gaṇita-yukti-bhāṣā sections VIII.3–7,
Sarma (2008: 622–628), Tantrasaṅgraha Ap-
pendix F.1.2, Ramasubramanian and Sriram
(2011: 492–494), for the derivation.
137 See Āryabhaṭīya verse 10 in the Gītikā
chapter, Shukla and Sarma (1976: 22–23).
138 Before this verse, Bannañje (1974b: 188),
and Bhikṣu (n.d.) have the half verse तदके-
िदनगा िलता गहाणां ववभुतयः that is repeated

in twenty-first verse. Bannañje (1974b: 188)
states this to be scribal error.
139 Bannañje (1974b: 188) uses राश्यायायनम ्
whereas Bhikṣu (n.d.) has the reading
राश्याययनम।् The latter seems to be more
appropriate as the word ayana is employed
in other astronomical texts. See Karaṇaratna
verse I.36, Shukla (1979: 25).
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देिहिनӀं सुगप्रायं सावलोΐं तिटद्वपुः ॥ १७ ॥ 140

नवभाय͐ित वाΐािन ज्ञोऽनԜोऽत्र तु हारकः ।
तद्दोжार्िलिղका भानौ यु΃ा Ӏ΃ाऽथ गोळयोः ॥ १८ ॥ 141 ॥ अनुटभु ॥् 
kalyabdaugho dhenubhavo yuktaḥ saurairvṛthāphalaiḥ |
etasmānmāpaterlabdhaṃ rāśyādyayanamucyate || 16 ||
prabhāratnaṃ dhīsavanaṃ gānasthānaṃ janedhanam |
dehinityaṃ sugaprāyaṃ sāvalokyaṃ taṭidvapuḥ || 17 ||
navabhāryeti vākyāni jño’nanto’tra tu hārakaḥ |
taddorjyāliptikā bhānau yuktvā tyaktvā’tha goḷayoḥ || 18 || || anuṣṭubh ||
Dhenubhava (4409) added with sauravṛthāphala is the collection of kali
years [elapsed]. The rāśis, etc., obtained from the division of this
[group of kali years] by māpati (615) is called ayana. Prabhāratna (242),
dhīsavana (479), gānasthāna (703), janedhana (908), dehinitya (1088),
sugaprāya (1237), sāvalokya (1347), taṭidvapu (1416), navabhāryā (1440)
— thus are the vākyas, and jño’nanta (600) is the divisor here [for in-
terpolation]. Thereafter, in [the true longitude of] the Sun, that Rsine
[in] minutes is added or subtracted [if the ayana is] in the two (south-
ern and northern) hemispheres [respectively].

The above verses prescribe the procedure to find the sāyana longitude142 of
the Sun from its nirayana longitude.143 The sāyana longitude is necessary for
udayāntara and cara corrections and can be determined by computing the motion
of the vernal equinox (Γ) with respect to meṣādi (𝑀). The model considered
in Tithinirṇaya to compute the motion of the equinox is same as the model
described in Karaṇaratna of Devācārya, and in the commentary of Āmarāja
on Khaṇḍakhādyaka.144 To this end, the above verses initially prescribe the
determination of a quantity named ayana (𝐴̄) as follows:

ayana(𝐴̄) = 􏿰
kalyabdaugha

māpati 􏿳 = 􏿰
dhenubhava + sauravṛthāphala

māpati 􏿳 (rāśi, etc.)

= 􏿰
kali years

615 􏿳 = 􏿰
4409 + sauravṛthāphala

615 􏿳 (signs, etc.), (64)

140 Bannañje (1974b: 188) notes the al-
ternate readings धीवसनम्, and सपुमयम ् as
scribal errors. He also makes an observa-
tion that this verse matches with Karaṇaratna
verses I.49(c,d)–50(a,b), Shukla (1979: 34–
35). Though Bhikṣu (n.d.) does not feature
this verse, it contains the commentary of the
same.
141 Bhikṣu (n.d.) has the reading परं लवादयो

भानोः युतााऽथगोलयोः।
142 The longitude measured with respect
to the vernal equinox (Γ).
143 The longitude measured with respect
to meṣādi (𝑀).
144 See Karaṇaratna verse I.36, Shukla
(1979: 25–26), and the commentary of
Āmarāja on Khaṇḍakhādyaka verse III.11,
Misra (1925: 105–107).
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where 4409 and sauravṛthāphala145 are the elapsed kali years till epoch and since
the epoch respectively.

S. No.
bhuja of ayana (𝐴̄) Motion of equinox (𝜃Γ) Computed declination
in degrees in min phrase in min (𝜃Γ) of 𝐶Γ in min

1 10 600 prabhāratna 242 243.01
2 20 1200 dhīsavana 479 479.79
3 30 1800 gānasthāna 703 704.04
4 40 2400 janedhana 908 909.35
5 50 3000 dehinitya 1088 1089.26
6 60 3600 sugaprāya 1237 1237.48
7 70 4200 sāvalokya 1347 1348.23
8 80 4800 taṭidvapu 1416 1416.78
9 90 5400 navabhāryā 1440 1440

Table 5: The motion of vernal equinox (𝜃Γ) in minutes corresponding to bhuja of
ayana values.

The above verses, through the phrases prabhāratna, etc., further provide the
motion of the equinox (𝜃Γ) for every 600′ interval of ayana (𝐴̄) as summarized
in Table 5. It is worth noting that verse 17 is also found in Karaṇaratna, a seventh
century CE astronomical text.146

To determine the motion (𝜃Γ) of the equinox corresponding to an ayana (𝐴̄)
value which lies within any given interval, the verses hint at an interpolation
formula. If (𝜃Γ)𝑖 and (𝜃Γ)𝑖+1 are the motion of the equinox corresponding to the
successive values of ayana, 𝐴̄𝑖 and 𝐴̄𝑖+1 respectively, then the desired motion of
the equinox (𝜃Γ) corresponding to 𝐴̄𝑗, which lies in between 𝐴̄𝑖 and 𝐴̄𝑖+1, can be
obtained by the following interpolation147

𝜃Γ = (𝜃Γ)𝑖 +
(𝜃Γ)𝑖+1 − (𝜃Γ)𝑖

600′ × 􏿴𝐴̄𝑗 − 𝐴̄𝑖􏿷 . (65)

Finally, the above verses derive the sāyana longitude of the Sun (𝜆𝑠) by ap-
plying the motion of equinox (𝜃Γ) to the true nirayana longitude (𝑏𝜃𝑚𝑠 ) of the
bhujāntara corrected Sun (𝑆𝑏) in the following manner:

𝜆𝑠 = 𝑏𝜃𝑚𝑠 ∓ |𝜃Γ| , (66)
145 The integral value of 􏿯𝐴

′×31
11323 􏿲 in (1).

146 See Karaṇaratna verses I.49(c,d)–
50(a,b), Shukla (1979: 34–35).
147 This interpolation formula is not expli-

citly stated in the verse. The formula pro-
posed by us here is a modification of (58),
by changing the divisor to 600′.
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where the correction is negative for the ayana in the northern hemisphere (first
and second quadrants) and positive for the ayana in the southern hemisphere
(third and fourth quadrants).148

12.1 EXPLANATION
The phenomenon of the vernal equinox (Γ) oscillating149 about the meṣādi (𝑀) is
called trepidation and can be understood with the help of Figure 15. Figures 15a
and 15b depict the instants when the vernal equinox (Γ) is positioned to the east
and west of meṣādi (𝑀), respectively. If >𝑀𝑆𝑏 = 𝑏𝜃𝑚𝑠 , as obtained from (59), is
the true nirayana longitude of the bhujāntara corrected Sun (𝑆𝑏), and >𝑀Γ = 𝜃Γ is
the position of the vernal equinox (Γ) with respect to meṣādi (𝑀), then its corres-
ponding sāyana longitude (𝜆𝑠) will be

𝜆𝑠 =
>Γ𝑆𝑏 =

>𝑀𝑆𝑏 ∓
>𝑀Γ

= 𝑏𝜃𝑚𝑠 ∓ |𝜃Γ| . (67)

The position (𝜃Γ) of the vernal equinox with respect to meṣādi (𝑀) can be com-
puted knowing the characteristics of the oscillation, i.e., amplitude, time period,
and the position of the vernal equinox at some epoch. Knowing this model from
the standard texts,150 the amplitude ([𝜃Γ]𝑚𝑎𝑥) and the time period of the oscilla-
tion, considered in Tithinirṇaya, are taken to be 1440′ or 24∘ and 7380 kali years
respectively. Further, at the instant of kalyādi, the position of the vernal equinox
is considered to be 𝜃Γ = 0∘ and moving to the east of the meṣādi (𝑀). If 𝐾𝑦 is
the number of kali years elapsed since the start of kaliyuga, then the number of
oscillations completed by the vernal equinox (Γ) about the meṣādi (𝑀) is given
by the ayana as

ayana (𝐴̄) =
𝐾𝑦

7380 (osc). (68)

If𝐾𝑒
𝑦 and𝐾𝑠𝑒

𝑦 are the kali years elapsed till epoch (1610424) and since the epoch
(𝐴′ = 𝐴 − 1610424) respectively, then employing (4) and (7), we have

𝐾𝑦 = 𝐾𝑒
𝑦 + 𝐾𝑠𝑒

𝑦

= 􏿰1610424 ×
𝑅𝑠
𝐷𝑐

􏿳 + 􏿰𝐴′ × 𝑅𝑠
𝐷𝑐

􏿳

≈ 4409 + 􏿰𝐴′ × 31
11323􏿳 . (69)

148 Refer Footnote 130.
149 In Indian astronomy, there are two the-
ories to describe the motion of the equinox.
They are Trepidation and Precession. See

Ramasubramanian and Sriram (2011: 14–15)
for more details.
150 Refer footnote 144.
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Celestial Equator
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(a)
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Figure 15: Diagrams depicting the oscillation of the vernal equinox (Γ) about
meṣādi (𝑀) and showing the instants when the vernal equinox (Γ) is to (a) the
east of meṣādi (𝑀) and (b) the west of meṣādi (𝑀).

Thus, employing (69) in (68), we have

ayana (𝐴̄) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

4409 + 􏿯𝐴
′×31

11323 􏿲

7380

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
(osc) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

4409 + 􏿯𝐴
′×31

11323 􏿲

615

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
(rāśi), (70)

which is equivalent to (64).
The geometrical significance of ayana (𝐴̄) and the computation of the motion

(𝜃Γ) of the vernal equinox (Γ) with respect to meṣādi (𝑀) from the ayana (𝐴̄)
can be understood with the help of Figure 16. This figure is similar to Figure 15
and depicts the direction of motion of the Sun (𝑆𝑏) on the ecliptic. The sāyana
longitude (>Γ𝑆𝑏 = 𝜆𝑠) of the Sun (𝑆𝑏) indicates its position on the ecliptic and
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Celestial Equator 𝛿𝑠

−𝜃Γ
𝐷

𝐸

𝑆𝑏
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Ecliptic

Γ

Ω

𝜆 𝑠

ayana (𝐴̄)

𝜖

Figure 16: A diagram indicating the directions of motion of the Sun and the ce-
lestial body 𝐶Γ on the ecliptic.

>𝐷𝑆𝑏 = 𝛿𝑠 is its corresponding declination given by151

𝛿𝑠 = sin−1 (sin 𝜖 × sin𝜆𝑠) , (71)

where 𝜖 = 24∘ is the obliquity of the ecliptic. Thus, the declination of the Sun
varies between +24∘ and −24∘. In Tithinirṇaya, the amplitude of oscillation of the
vernal equinox about meṣādi is also considered to be 24∘. Perhaps due to this co-
incidence, the text proposes a formula for the computation of trepidation which
is analogous to the declination formula of the Sun. In this analogy, the ayana
corresponds to the longitude (𝜆𝑠) of the Sun, and the motion (𝜃Γ) of the equinox
corresponds to the declination (𝛿𝑠) of the Sun. This can be better understood
with the help of the fictitious celestial body 𝐶Γ (see Figure 16) moving on the ec-
liptic in the direction opposite to the motion of the Sun, with a revolution period
equal to the time period of trepidation, i.e., 7380 kali years. The position of the
celestial body 𝐶Γ on the ecliptic is indicated by ayana (>Γ𝐶Γ = 𝐴̄), which is meas-
ured clockwise with respect to the vernal equinox (Γ). The declination (>𝐸𝐶Γ) of
the celestial body (𝐶Γ) corresponds to the motion (𝜃Γ) of the vernal equinox and
computed from a relation analogous to (71) as follows:152

𝜃Γ = sin−1 􏿴sin 𝜖 × sin 𝐴̄􏿷 . (72)

We have shown in Table 5 that the values of the motion (𝜃Γ) of the vernal equinox
computed from (72) are indeed close to the values given in the verses.

151 See Tantrasaṅgraha section II.11, Rama-
subramanian and Sriram (2011: 78), for
its derivation. Also, see Āryabhaṭīya verse
24 in the Gola chapter, Shukla and Sarma

(1976: 132), Laghubhāskarīya verse II.16,
Shukla (1963: 24–25), Śiṣyadhīvṛddhidatantra
verse II.17, Chatterjee (1981: 39–41).
152 Refer footnote 144.
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From Figure 16 it is evident that the sign of the declination of 𝐶Γ is negative
for the ayanas in first and second quadrants, measured clockwise from Γ, i.e.,
0∘ ≤ ayana ≤ 180∘, and positive for the ayanas in third and fourth quadrants, i.e.,
180∘ ≤ ayana ≤ 360∘. Hence, from (67), the true sāyana longitude (𝜆𝑠) of the
bhujāntara corrected Sun (𝑆𝑏) will be

𝜆𝑠 =
⎧⎪⎨
⎪⎩
𝑏𝜃𝑚𝑠 − |𝜃Γ| , 0∘ ≤ ayana ≤ 180∘
𝑏𝜃𝑚𝑠 + |𝜃Γ| , 180∘ ≤ ayana ≤ 360∘

which is equivalent to (66). It is worth noting that, as per this model, the rate
of motion of the equinox,153 in seconds per year, ranges from 0″, when ayana
(𝐴̄) = 90∘, 270∘, to 71.43″, when ayana (𝐴̄) = 0∘, 180∘, with a mean rate observed
to be approximately (1440 × 60 × 4/7380) ≈ 46.8″/ year.

Further, at present, when 5125 kali years have elapsed, the ayana (𝐴̄) and mo-
tion (𝜃Γ) of the equinox, from (68) and (72), are computed to be 249.99∘ and
22.47∘ respectively. As the current ayana, 𝐴̄ = 249.99∘, lies in the third quad-
rant, the sāyana longitude (𝜆𝑠) of the Sun is obtained by adding the motion
(𝜃Γ = 22.47∘) of the equinox to the nirayana longitude (𝑏𝜃𝑚𝑠 ) of the Sun.

13 UDAYĀNTARA CORRECTION: ACCOUNTING THE
OBLIQUITY OF THE ECLIPTIC

THE TITHINIRṆAYA does not discuss the udayāntara correction as a part of the
sequence of corrections, but for the sake of completeness, we briefly dis-

cuss its purpose and procedure here. In modern astronomy, ‘the equation of
time’ constitutes the time difference between the instants of true and mean sun-
rise.154 In Indian astronomy, this time difference is accounted for by two distinct
corrections: bhujāntara and udayāntara. We have already discussed the rationale
of bhujāntara correction in Section 7. Now, we shall explain the second correc-
tion: udayāntara. The purpose of the udayāntara correction is to account for the
obliquity of the ecliptic. The discussion until now has assumed zero obliquity
of the ecliptic, i.e., the ecliptic coincides with the celestial equator as shown in
Figures 3, 5, 7, 9, and 11. However, the ecliptic has an obliquity of 𝜖 = 24∘. The
udayāntara correction accounts for the time difference (Δ𝑡𝑢 = 𝑡𝑏 ∼ 𝑡𝑢) between
the instants of true sunrise at 𝐿′ before and after considering the obliquity of the
ecliptic, and can be understood with the help of Figure 17.

Figure 17 depicts the instant (𝑡𝑏) of true sunrise at 𝐿′, neglecting the obliquity
of the ecliptic. Here, the true Sun (𝑆𝑏), positioned at >Γ𝑆𝑏 = Γ􏾨𝑃𝑁𝑆𝑏 = 𝜆𝑠 on the

153 The rate of motion of the equinox is
computed taking the derivative of (72).

154 See Ramasubramanian and Sriram
(2011: 82,464–465).
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Figure 17: A diagram showing the instant (𝑡𝑏) of true sunrise at 𝐿′ and the effect
of the obliquity of the ecliptic on the instant of true sunrise.

celestial equator, is just about to rise at the cardinal east (𝐸). When the obliquity
(𝜖) of the ecliptic is accounted for, the true Sun 𝑆𝑒𝑏 will now be positioned on the
ecliptic at

>
Γ𝑆𝑒𝑏 = 𝜆𝑠, which will not be on the horizon. In our figure, the Sun (𝑆𝑒𝑏)

has already risen. As we are interested in the instant (𝑡𝑢) of true sunrise at 𝐿′,
one must travel back (or forward) in time in order to observe the Sun at the in-
tersection (𝐼) of the diurnal circle and the horizon. If 𝐹 is the point of intersection
of the arc of the meridian drawn through 𝑆𝑒𝑏 and the celestial equator, the time
taken for the true Sun to traverse from 𝐼 to 𝑆𝑒𝑏 on its diurnal path is equal to the
time taken for a point on the celestial equator to traverse from 𝐸 to 𝐹. We have

>𝐸𝐹 = 𝐸􏾨𝑃𝑁𝐹 = 𝐸􏾨𝑃𝑁Γ − 𝐹􏾨𝑃𝑁Γ
= >Γ𝐸 −>Γ𝐹
= 𝜆𝑠 − 𝛼𝑠, (73)

where 𝛼𝑠 is the right ascension of the Sun corresponding to 𝜆𝑠 given by the ex-
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pression155

𝛼𝑠 = sin−1 􏿶
sin𝜆𝑠 × cos 𝜖

cos 𝛿𝑠
􏿹 . (74)

Here, 𝜖 = 24∘ is the obliquity of the ecliptic, and 𝛿𝑠 is the declination of the
Sun as given by (71). If Δ𝑡𝑢 is the sidereal time taken for the diurnal motion of
𝜆𝑠 −𝛼𝑠, which is approximately the time difference (𝑡𝑢 ∼ 𝑡𝑏) between the instants
of sunrise before and after considering the obliquity of the ecliptic, the angle
traversed by the planet in this time interval is known as the udayāntara correction
(Δ𝑢

𝑝) of the planet. As the Sun (𝑆𝑒𝑏) approximately traces a complete diurnal circle
of 360∘ or 21600′ in a sidereal day, the time taken by the Sun (𝑆𝑒𝑏) to traverse the
diurnal path by 𝜆𝑠 − 𝛼𝑠 (min) will be

Δ𝑡𝑢 = 𝜆𝑠 − 𝛼𝑠
21600′ (sidereal day). (75)

Thus, the udayāntara correction (Δ𝑢
𝑝) of the planet — the angle (Δ𝑢

𝑝), in
minutes, traversed by the planet in the time interval Δ𝑡𝑢 — will be

Δ𝑢
𝑝 = Δ𝑡𝑢 × 𝜃̇𝑡𝑝 =

𝜆𝑠 − 𝛼𝑠
21600′ × 𝜃̇𝑡𝑝 (min), (76)

where 𝜃̇𝑡𝑝 is the true rate of motion of the planet in min/day.156

Hence, the udayāntara corrected planet (𝜃𝑢𝑝) will be

𝜃𝑢𝑝 = 𝑏𝜃𝑚𝑝 ∓ |Δ𝑢
𝑝| , (77)

where 𝑏𝜃𝑚𝑝 is the true longitude of the bhujāntara corrected planet.157 The correc-
tion is negative for (𝜆𝑠 − 𝛼𝑠) ≥ 0, which happens when 𝜆𝑠 is in the first and third
quadrants, and positive for (𝜆𝑠 − 𝛼𝑠) ≤ 0, which happens when 𝜆𝑠 is in second
and fourth quadrants.158 This correction was usually ignored by astronomers be-
fore the advent of Śrīpati (eleventh century CE).159 Though the present work is
composed after his period, it has not been considered in the text.

155 See Yelluru and Kolachana (2023: 171–
173), Kolachana, Mahesh, and Ramasubra-
manian (2018: 3), and Tantrasaṅgraha sec-
tion II.11, Ramasubramanian and Sriram
(2011: 78), for its derivation.
156 Refer footnote 104.
157 In the case of the Sun and the Moon, 𝑏𝜃𝑚

𝑠

and 𝑏𝜃𝑚
𝑚 can be obtained from (59) and (60)

respectively.
158 See Kolachana, Mahesh, and Ramasu-
bramanian (2018: 12).
159 See Sastri (1957: XXXVI), Shukla
(1963: 28), Shukla (1960: 114–115).
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14 CARADAL A CORRECTION: FOR AN OBSERVER’S LATITUDE
OF 12.78∘

अकर् पूжािदवाΐोͿदोिवर्िलղाײरोिदताः । 160

अकर् पूжः सुधाकरः रितक्र̤डो नुतः प्रभुः ॥ १९ ॥161

अलङृ्कؑो िहतोदे्दशो गितभूतः रािदर्तःض ।162

श̠शधातेित वाΐािन ज्ञोनԜोऽत्र तु हारकः ॥ २० ॥ 163

तदेकिदनगा िलղा ग्रहाणां भुͿयःؼؼ ।164

चराधार्त् ؼؼभुिͿϝादनԜाङ्गहृताः कलाः ।165

ऋणं प्रातधर्नं सायमुҭरे द̠क्षणेऽՐथा ॥ २१ ॥ ॥ अनुटभु ॥् 
देशाԜरदोिवर्वरजसं؟ारिव̠धिवर्धीयते मԅे । 166

चरदलसं؟ारिव̠धः टिक्रयानԜरंسु स̠द्भः ॥ २२ ॥167 ॥आया र् ॥
arkapūjyādivākyoktadorviliptāścaroditāḥ |
arkapūjyaḥ sudhākaraḥ ratikrīḍo nutaḥ prabhuḥ || 19 ||
alaṅkṛṣṇo hitoddeśo gatibhūtaḥ smarārditaḥ |
śaśidhāteti vākyāni jñonanto’tra tu hārakaḥ || 20 ||
tadekadinagā liptā grahāṇāṃ svasvabhuktayaḥ |
carārdhāt svasvabhuktighnādanantāṅgahṛtāḥ kalāḥ |
ṛṇaṃ prātardhanaṃ sāyamuttare dakṣiṇe’nyathā || 21 || || anuṣṭubh ||
deśāntaradorvivarajasaṃskāravidhirvidhīyate madhye |
caradalasaṃskāravidhiḥ sphuṭakriyānantaraṃ sadbhiḥ || 22 || || āryā ||
The Rsine in viliptis mentioned in vākyas beginning with arkapūjya
(1110) etc., are called caras. The vākyas are thus: arkapūjya (1110),
sudhākara (2197), ratikrīḍa (3262), nutaprabhu (4260), alaṅkṛṣṇa
(5130), hitoddeśa (5868), gatibhūta (6463), smarārdita (6825), śaśidhāta
(6955). Here, jño’nanta (600) is the divisor [for interpolation]. The
respective rates of motion of the planets [is equal to] the minutes
(liptis) traversed by them in one day. The minutes (kalās) are [the
result obtained] from half the cara multiplied by their respective

160 Bhikṣu (n.d.) has the reading
अकर्पूयातवायात।
161 Bannañje (1974b: 189) notes अकर् ः पूयः
as an alternate reading. Bhikṣu (n.d.) has
the reading अकर्पूया (1110) सदाकारो (2187)
रितकडा (3162) नतभुपूम (्4260)।
162 Bannañje (1974b: 189) notes मरािदतः as
an alternate reading and मरािजतः as a
scribal error. Bhikṣu (n.d.) has the reading
मरािजतः।
163 Bhikṣu (n.d.) has the reading ज्ञोनत-
तत हारकः। A half verse दशेातरं रवबेा र्हुः

भागनतभररैिप is also found after verse 20.
164 Bannañje (1974b: 190) notes an al-
ternate reading ववभतूयः as a scribal
error. Bhikṣu (n.d.) has the reading
तदकेिदनभागािलताः।
165 Bannañje (1974b: 190) notes an altern-
ate reading ववभिूतनात ् as a scribal error.
Bhikṣu (n.d.) has the readingचराधं ववभुा
ज्ञानतागहृताः कलाः ।
166 Bannañje (1974b) notes दशेातरे
दोिव र्वरसंकार as an alternate reading.
167 This verse is missing in Bhikṣu (n.d.).
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rates of motion and divided by anantāṅga (3600). [The result is]
negative (i.e., subtracted) for the morning, [and] positive (i.e.,
added) for the evening [if the Sun is] in the northern [hemisphere],
[and] otherwise [if the Sun is] in the southern [hemisphere]. The
procedure of deśāntara correction and the bhujāntara correction
(dorvivaraja) is recommended in [the computation of] the mean
[planets], and the procedure of caradala correction is recommended
[to be applied] after determining the true [planets], by the learned.

The above verses prescribe the caradala correction (Δ𝑐𝑎
𝑝 ) for the planet (𝑝) to

obtain its true longitude (𝜃𝑡𝑝) at the instant (𝑡𝑐𝑎) of true sunrise for an observer
𝑄 understood to be at a latitude (𝜙) of 12.78∘.168 This correction accounts for
the time difference (Δ𝑡𝑐𝑎 = 𝑡𝑐𝑎 ∼ 𝑡𝑢)169 between the instants of true sunrise at
𝑄 (𝜙 = 12.78∘) and 𝐿′ (𝜙 = 0∘). Verses 19 and 20, through the phrases arka-
pūjya, etc., state the values of twice the ascensional difference, or cara (2Δ𝛼), in
gurvakṣaras,170 for an observer situated at a latitude (𝜙) of 12.78∘, at every 600′
interval of the sāyana longitude of the Sun (𝜆𝑠), as summarized in Table 6.

To determine the cara (2Δ𝛼) corresponding to the sāyana longitude (𝜆𝑠) of the
Sun which lies within any given interval, the verses hint at an interpolation for-
mula, as was also previously observed in verses 17 and 18. If (2Δ𝛼)𝑖 and (2Δ𝛼)𝑖+1
are the cara values corresponding to the successive values of sāyana longitude of
the Sun, (𝜆𝑠)𝑖 and (𝜆𝑠)𝑖+1 respectively, then the desired cara (2Δ𝛼) corresponding
to (𝜆𝑠)𝑗 which lies in between (𝜆𝑠)𝑖 and (𝜆𝑠)𝑖+1 can be obtained by the following
interpolation:171

2Δ𝛼 = (2Δ𝛼)𝑖 +
(2Δ𝛼)𝑖+1 − (2Δ𝛼)𝑖

600′ × 􏿴(𝜆𝑠)𝑗 − (𝜆𝑠)𝑖􏿷 . (78)

Verses 21 and 22 prescribe the procedure for applying the caradala correction
(Δ𝑐𝑎

𝑝 ) to a planet (𝑝). This correction is applied to the true nirayana longitude
(𝑏𝜃𝑚𝑝 ) of the bhujāntara corrected planet (𝑝) at true sunrise at 𝐿′.172 The following
rule is prescribed in the above verses

168 See Section 14.1.2 for more details.
169 If the udayāntara correction is neglected,
as in the Tithinirṇaya, then 𝑡𝑢 may be approx-
imated to 𝑡𝑏.
170 Though the units of the cara
are stated to be viliptis in the verse,
Bannañje (1974b: 190) correctly
notes that the units should be in
gurvakṣaras. It may be noted that
1 ghaṭikā = 60 vighaṭikā𝑠 = 3600 gurvakṣara𝑠.

171 Refer footnote 147.
172 This correction must be actually ap-
plied to the true nirayana longitude (𝜃𝑢

𝑝) of
the udayāntara corrected planet, as obtained
from (77). As the udayāntara correction is ig-
nored in the sequence of corrections in Tithi-
nirṇaya, this correction is applied to the true
nirayana longitude (𝑏𝜃𝑚

𝑝 ) of the bhujāntara
corrected planet, as obtained from (59) and
(60) for the Sun and the Moon respectively.
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S. No.
𝜆𝑠 𝛿𝑠 sin(Δ𝛼)

Cara (2Δ𝛼)
calculated in Tithinirṇaya

min min vighaṭikā phrase gurvakṣara vighaṭikā
1 600 243.01 0.0161 18.41 arkapūjya 1110 18.5
2 1200 479.79 0.0319 36.52 sudhākara 2197 36.62
3 1800 704.04 0.0471 54.01 ratikrīḍa 3262 54.37
4 2400 909.35 0.0614 70.45 nutaprabhu 4260 71.00
5 3000 1089.26 0.0744 85.31 alaṅkṛṣṇa 5130 85.5
6 3600 1237.48 0.0854 97.95 hitoddeśa 5868 97.8
7 4200 1348.23 0.0938 107.67 gatibhūta 6463 107.72
8 4800 1416.78 0.0992 113.82 smarārdita 6825 113.75
9 5400 1440.00 0.1010 115.92 śaśidhāta 6955 115.92

Table 6: The values of cara (2Δ𝛼) for the corresponding values of the sāyana lon-
gitude of the Sun (𝜆𝑠).

𝜃𝑡𝑝 = 𝑏𝜃𝑚𝑝 ∓ |Δ𝑐𝑎
𝑝 |

= 𝑏𝜃𝑚𝑝 ∓ |cara
2 × svasvabhukti

anantāṅga | (kalās)

= 𝑏𝜃𝑚𝑝 ∓ 􏵶
2Δ𝛼
2 ×

𝜃̇𝑡𝑝
3600􏵶 (min), (79)

where 𝜃̇𝑡𝑝 is the true motion of the planet in min/day and 2Δ𝛼 is the cara in
vighaṭikās. The correction is subtracted for sunrise and added for sunset if the
sāyana Sun is in the northern hemisphere (first and second quadrants). The cor-
rection is done otherwise if the sāyana Sun is in the southern hemisphere (third
and fourth quadrants).173 The verses also prescribe that the cara correction is
done only after obtaining the true planet, whereas deśāntara and bhujāntara cor-
rections are applied on the mean planet.

14.1 EXPLANATION
14.1.1 Significance of cara

The cara, or twice the ascensional difference (2Δ𝛼), is the time increment or decre-
ment in the length of the day for a non-equatorial observer at 𝑄 (see Figure 2)
173 Refer Footnote 130.
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with respect to an equatorial observer at 𝐿′. This time difference arises due to
the differences in the instants of sunrise and sunset at different latitudes on the
earth. The rationale for the correction can be understood with the help of Fig-
ure 18. Figure 18a is similar to Figure 17 and depicts an udayāntara corrected Sun
(𝑆𝑢) at the instant (𝑡𝑢) of true sunrise for an observer at 𝐿′. This observer (𝐿′)
on the equator views the Sun (𝑆𝑢) rising and setting at 𝐼 and 𝐽 respectively on
the 6 o’clock circle.174 The length of the day (sunrise (𝑋) to sunset (𝑌)) is the
time taken for the Sun (𝑆𝑢) to traverse from 𝐼 to 𝐽 along the diurnal path, whose
magnitude is given by the angular measure 𝐼􏾨𝑃𝑁𝐽 = 𝑋􏾨𝑃𝑁𝑌 = 180∘. Figure 18b also
depicts the same instant (𝑡𝑢) as Figure 18a,175 but for an observer 𝑄 at a northern
latitude (>𝑁𝑃𝑁 = 𝜙). This observer (𝑄) views the Sun (𝑆𝑢) rising and setting at
𝑋 and 𝑌, respectively, at the horizon. The length of the day, in this case, is the
time taken for the Sun (𝑆𝑢) to traverse from 𝑋 to 𝑌 along the diurnal path, which
is indicated by an angular measure 𝑋􏾨𝑃𝑁𝑌 given by

𝑋􏾨𝑃𝑁𝑌 = 𝑋􏾨𝑃𝑁𝐼 + 𝐼􏾨𝑃𝑁𝐽 + 𝐽􏾨𝑃𝑁𝑌
= 180∘ + 2Δ𝛼, (80)

where 𝑋􏾨𝑃𝑁𝐼 = 𝐽􏾨𝑃𝑁𝑌 = Δ𝛼 and 𝐼􏾨𝑃𝑁𝐽 = 180∘.
As the time difference (Δ𝑡𝑐𝑎) between the instants of sunrise (or sunset) for

the observers at 𝑄 (𝜙) and at 𝐿′ (𝜙 = 0∘) is the time required to cover the diurnal
path 𝑋􏾨𝑃𝑁𝐼 (or 𝐽􏾨𝑃𝑁𝑌) = Δ𝛼, the total time increment or decrement in the length
of the day, in vighaṭikās,176 is given by177

cara = 2Δ𝛼 = 2 × sin−1(tan𝜙 × tan 𝛿𝑠) (degrees)

= 2 × sin−1(tan𝜙 × tan 𝛿𝑠) ×
3600
360∘ (vighaṭikā𝑠), (81)

where 𝛿𝑠 is the declination of the Sun as given by (71).

174 The 6 o’clock circle is the great circle
passing through the cardinal east (𝐸) and
west (𝑊), and the celestial poles (𝑃𝑁 or 𝑃𝑆)
and bisects the diurnal path of the sun. For
an equatorial observer, the 6 o’clock circle
coincides with the horizon.
175 See the position of the Sun (𝑆𝑢) at ‘𝐼’ on
the 6 o’clock circle.
176 Approximating 1 sidereal day ≈ 1 mean
civil day = 3600 vighaṭikās.
177 See Kolachana, Mahesh, Montelle,

et al. (2018) for its derivation. Also,
see Āryabhaṭīya verse 26 in the Gola
chapter, Shukla and Sarma (1976: 135–136),
Laghubhāskarīya verses II.17–18, Shukla
(1963: 25–26), Mahābhāskarīya verses III.6–7,
Shukla (1960: 62–65), Śiṣyadhīvṛddhidatantra
verse II.18, Chatterjee (1981: 39–43), Tantra-
saṅgraha section II.11, Ramasubramanian
and Sriram (2011: 76–80), Karaṇapaddhati
verse VIII.15–18, Pai, Ramasubramanian,
et al. (2018: 252–256).
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Figure 18: Diagrams showing the diurnal path of the Sun (𝑆𝑢) for the observers
having the same meridian but (a) one at 𝐿′ on the equator (𝜙 = 0∘) and (b) the
other at 𝑄 on any northern latitude (𝜙).
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14.1.2 Latitude for which cara is computed in Tithinirṇaya
The computed values of cara (2Δ𝛼), using (81), approximately match with the
values mentioned in the verses for an observer at latitude (𝜙) of 12.78∘𝑁, as
shown in Table 6. This implies that the author wishes to compute the tithi for
this latitude. Kāvu (𝜙 = 12.53∘𝑁), the hometown of Śrī Trivikramapaṇḍitācārya
(suggested author of this Tithinirṇaya), near Kāsargoḍ, Kerala, is situated near
this latitude.178 Udupi (𝜙 = 13.34∘𝑁), where the Mādhva community is concen-
trated, is also situated close to this latitude, and thus this text could have been
intended for the computations there as well.

14.1.3 Rationale for the caradala correction
The procedure for application of cara, as given in (79), can be understood as fol-
lows. As Figure 18b depicts the instant (𝑡𝑢) of true sunrise at 𝐿′, to determine the
instant (𝑡𝑐𝑎) of true sunrise at 𝑄, one should travel back (or forward) in time in
order to observe the true Sun at the intersection (𝑋) of the diurnal path of the
Sun and the horizon. If Δ𝑡𝑐𝑎 = Δ𝛼 (in vighaṭikās), computed using (81), is the
sidereal time taken for the diurnal motion (>𝑋𝑆𝑢) of the Sun, which is approxim-
ately the time difference (𝑡𝑐𝑎 ∼ 𝑡𝑢) between the instants of true sunrise for the
observers at 𝑄 (𝜙) and at 𝐿′ (𝜙 = 0∘), then the angle traversed by the planet in
this time interval is known as the caradala correction (Δ𝑐𝑎

𝑝 ) of the planet (𝑝) and
is given by179

Δ𝑐𝑎
𝑝 = Δ𝛼 ×

𝜃̇𝑡𝑝
3600 (min), (82)

where 𝜃̇𝑡𝑝 is the true motion of the planet in min/day.180 Hence, the caradala cor-
rected planet (𝜃𝑡𝑝) is obtained by applying (82) to the udayāntara corrected planet
(𝜃𝑢𝑝) as follows:

𝜃𝑡𝑝 = 𝜃𝑢𝑝 ∓ |Δ𝑐𝑎
𝑝 | ≈ 𝑏𝜃𝑚𝑝 ∓ |Δ𝑐𝑎

𝑝 |

≈ 𝑏𝜃𝑚𝑝 ∓ 􏵶Δ𝛼 ×
𝜃̇𝑡𝑝
3600􏵶 , (83)

which is equivalent to (79), because the udayāntara correction is neglected in Tithi-
nirṇaya.

14.1.4 Sign of the caradala correction
The sign of the caradala correction is based on whether the diurnal motion of
the Sun is considered forward or back in time to observe the true Sun at the

178 Refer footnote 30.
179 See Karaṇaratna verse I.39, Shukla
(1979: 29), Khaṇḍakhādyaka verse I.22,

Sengupta (1934).
180 Refer footnote 176.
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horizon. When the diurnal motion of the Sun is considered forward or back in
time, the caradala correction should be added or subtracted, respectively. This
can be understood with the help of Figure 19, which is similar to Figure 18b, and
depicts the diurnal path of the Sun when its true sāyana longitude (𝜆𝑠) falls in
four different quadrants at the instant (𝑡𝑢) of true sunrise at 𝐿′ for an observer at
𝑄. It is observed from Figures 19a and 19b that, when the true sāyana longitude
(𝜆𝑠) of the udayāntara corrected Sun (𝑆𝑢 with declination 𝛿𝑠) is in the first and
second quadrants respectively, i.e., 0∘ ≤ 𝜆𝑠 ≤ 180∘, the true sunrise at 𝑄 happens
Δ𝛼 vighaṭikās before the true sunrise at 𝐿′, because the Sun, during its diurnal
motion, reaches the horizon (𝑋) before the 6 o’clock circle (𝐼), and thus the cara-
dala correction should be subtracted.

Similarly, it is observed from Figures 19c and 19d that, when the sāyana Sun
(𝑆𝑢 with declination −𝛿𝑠) is in the third and fourth quadrants respectively, i.e.,
180∘ ≤ 𝜆𝑠 ≤ 360∘, the true sunrise at𝑄happensΔ𝛼 vighaṭikās after the true sunrise
at 𝐿′, because the Sun, during its diurnal motion, reaches the 6 o’clock circle
(𝐼) before reaching the horizon (𝑋), and thus the caradala correction should be
added.

14.1.5 Caradala correction for the Sun and Moon
Substituting the values for the Sun and the Moon in (83), the true longitudes
(𝜃𝑡𝑠 and 𝜃𝑡𝑚) of the Sun and the Moon at the instant (𝑡𝑐𝑎) of true sunrise for an
observer at 𝑄 (𝜙 = 12.78∘), respectively, will be181

𝜃𝑡𝑠 = 𝜃𝑢𝑠 ∓ |Δ𝑐𝑎
𝑠 | ≈ 𝑏𝜃𝑚𝑠 ∓ |Δ𝑐𝑎

𝑠 | = 𝑏𝜃𝑚𝑠 ∓ 􏵶Δ𝛼 × 𝜃̇𝑡𝑠
3600􏵶 (84)

𝜃𝑡𝑚 = 𝜃𝑢𝑚 ∓ |Δ𝑐𝑎
𝑚 | ≈ 𝑏𝜃𝑚𝑚 ∓ |Δ𝑐𝑎

𝑚 | = 𝑏𝜃𝑚𝑚 ∓ 􏵶Δ𝛼 × 𝜃̇𝑡𝑚
3600􏵶 , (85)

where 𝑏𝜃𝑚𝑠 and 𝑏𝜃𝑚𝑚 are the true longitudes of the bhujāntara corrected Sun and
Moon, as obtained from (59) and (60), respectively, and 𝜃̇𝑡𝑠 and 𝜃̇𝑡𝑚 are the true
rates of motion of the Sun and Moon, respectively, and their computation will be
discussed in the following section.

181 As the udayāntara correction is ignored in the
Tithinirṇaya, 𝜃𝑢

𝑠 ≈ 𝑏𝜃𝑚
𝑠 and 𝜃𝑢

𝑚 ≈ 𝑏𝜃𝑚
𝑚.
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Figure 19: Diagrams showing the instant (𝑡𝑐𝑎) of sunrise at 𝑄 is, Δ𝛼 vighaṭikās
before the instant (𝑡𝑢) of sunrise at the equator (𝐿′), when the Sun (𝑆𝑢) is in (a)
quadrant-I (b) quadrant-II, and Δ𝛼 vighaṭikās after the instant (𝑡𝑢) of sunrise at
the equator (𝐿′), when the Sun (𝑆𝑢) is in (c) quadrant-III (d) quadrant-IV.
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14.1.6 True rate of motion of the planet
Even though (50) and (76) previously introduced the true rate of motion (𝜃̇𝑝) of
the planet, this concept is addressed here for a purpose. The earlier corrections
in Tithinirṇaya, such as deśāntara and bhujāntara,182 utilize only the mean rate of
motion of the planet. This is because the correction is performed with respect to
the observer positioned at the center of the planet’s orbit.183 As the mean rates of
motion (𝜃̇∘𝑠 and 𝜃̇𝑐𝑚) of the Sun and the Moon, given by (4) and (16) respectively,
are constant, their respective corrections of deśāntara, given by (36) and (37), and
bhujāntara, given by (44) and (45), do not explicitly utilize the rates of motion,
which are however implicit in the choice of multiplier and divisor.

The caradala correction is the only correction, in the Tithinirṇaya, which util-
izes the true rate of motion (𝜃̇𝑡𝑝) of the planet. This is evident from the use of
the phrase ‘svasvabhukti’ in verse 21. The true rate of motion of the planet is the
rate of angular displacement of the planet with respect to the observer at (𝑂′) in
Figure 11. The procedure to obtain the true rates of motion (𝜃̇𝑡𝑠 and 𝜃̇𝑡𝑚) of the
Sun and the Moon is not discussed in the text Tithinirṇaya. Pai and Sriram (2023)
give a detailed overview of the computations of true rates of motion in different
astronomical texts. Bannañje (1974b: 190) and Vyāsadāsa (2007: 37) compute it
in the following manner. If (𝑏𝜃𝑚𝑝 )𝐴 and (𝑏𝜃𝑚𝑝 )𝐴+1 in minutes are the true longit-
udes of the bhujāntara corrected planet at the instant (𝑡𝑏) of true sunrise at 𝐿′ on
the kali-ahargaṇas 𝐴 and 𝐴+ 1 respectively, then the true motion of the planet 𝜃̇𝑡𝑝
in min/day is given by184

𝜃̇𝑡𝑝 = (𝑏𝜃𝑚𝑝 )𝐴+1 − (𝑏𝜃𝑚𝑝 )𝐴. (86)

Bhikṣu (n.d.), in his commentary on Tithinirṇaya, proposes the following ex-
pressions for the true rates of motion (𝜃̇𝑡𝑠 and 𝜃̇𝑡𝑚) of the Sun and Moon, respect-
ively:185

𝜃̇𝑡𝑠 = 𝜃̇∘𝑠 ∓ 𝜃̇∘𝑠 􏿶
3
80 × Rsine difference

225′ 􏿹 (87)

𝜃̇𝑡𝑚 = 𝜃̇𝑐𝑚 ∓ 𝜃̇𝑐𝑚 􏿶
7
80 × Rsine difference

225′ 􏿹 , (88)

where 𝜃̇∘𝑠, and 𝜃̇𝑐𝑚 are the mean rates of motion of the Sun and the Moon, as
obtained from (4) and (16) respectively.

182 See (40), (52) and (55).
183 See Section 7.1 for our discussion on
‘mean’ and ‘true’ parameters.
184 See Laghubhāskarīya verse II.15(c,d),
Shukla (1963: 24), Mahābhāskarīya verse
IV.18, Shukla (1960: 122).
185 See Śiṣyadhīvṛddhidatantra Appendix

XIII, Chatterjee (1981: 318–319) for the
derivation. Also see, Laghubhāskarīya
verses II.9–13, Shukla (1963: 20–23),
Mahābhāskarīya verses IV.14–17, Shukla
(1960: 120–122), Karaṇaratna verses
I.31(c,d)–32, Shukla (1979: 22–23).
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15 ELAPSED TITHI AND THE ELAPSED TIME IN THE CURRENT
TITHI

चԶात् पूव͙Ϳसं؟ारकृताद् िदनपितं Ӏजेत् ।
शेषं ष،ा घटी̠भुأ िवभжाऽղा गता ित̠थः ॥ २३ ॥ 186

वतर्मानां द्वादश̠भिलर्िղका̠भहर्रेत् ित̠थम् ।
गताुأ नािडका ज्ञेयाः ̠श؋ा िलղाः प्रक̤ितर्ताः ॥ २४ ॥ ॥ अनुटभु ॥् 
candrāt pūrvoktasaṃskārakṛtād dinapatiṃ tyajet |
śeṣaṃ ṣaṣṭyā ghaṭībhistu vibhajyā’ptā gatā tithiḥ || 23 ||
vartamānāṃ dvādaśabhirliptikābhirharet tithim |
gatāstu nāḍikā jñeyāḥ śiṣṭā liptāḥ prakīrtitāḥ || 24 || || anuṣṭubh ||
From [the true longitude of] the Moon for which the earlier men-
tioned corrections are done, [the true longitude of] the Sun should be
subtracted. After dividing the remainder by 60 ghaṭikās the elapsed
tithi is indeed obtained. One shall divide [the elapsed minutes of] the
current tithi by 12 liptis [from which] the elapsed [time in the current
tithi in] nāḍikās are to be known. The remainder are stated to be the
[elapsed] minutes (liptis).

The above verses prescribe the procedure to obtain the number of elapsed
tithis (𝐸tithi), and the elapsed time in nāḍikās (𝐸ghaṭikā) and liptis (𝐸𝑙𝑖𝑝𝑡𝑖) in the cur-
rent tithi. As described in the above verses, the number of tithis elapsed (𝐸tithi) is
obtained from the quotient of

(𝜃𝑡𝑚 − 𝜃𝑡𝑠)
60(ghaṭikās) , (89)

where (𝜃𝑡𝑚 − 𝜃𝑡𝑠) is the difference in the true longitudes of the Moon and the Sun
in minutes. Normally, the denominator in (89) is considered to be 720′ or 12∘
in astronomical texts.187 Presuming that the author, by the use of 60 ghaṭikās
as the denominator in (89), intended to indicate the average duration of a tithi,
corresponding to an increase of 720′ in the longitudinal separation of the Moon
and the Sun, (89) can be written as:188

(𝜃𝑡𝑚 − 𝜃𝑡𝑠)
720′ = 𝐸tithi +

𝑟𝑡
720′ , (90)

where the quotient 𝐸tithi gives the number of tithis elapsed and the remainder 𝑟𝑡
gives the number of arc minutes (liptis) elapsed in the current tithi.

186 Bhikṣu (n.d.) has the reading िशटाः लवाः
िशया (12∘) भता लधातु ितथयो गताः।
187 See S. B. Rao (2000: 64–66), Ramasubra-

manian and Sriram (2011: 116–118).
188 This has vexed earlier commentators
too. See Bannañje (1974b: 192).
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Further, the verse prescribes the procedure to find the time elapsed (in
ghaṭikās) in the current tithi as follows:

𝑟𝑡
12(liptis) = gatanāḍikās + gataliptis

12

= 𝐸ghaṭikā +
𝐸lipti

12 , (91)

where the quotient 𝐸ghaṭikā (gatanāḍikās) and the remainder 𝐸𝑙𝑖𝑝𝑡𝑖 (gataliptis) give
the nāḍikās and the liptis elapsed in the current tithi respectively.

15.1 EXPLANATION
Tithi is a time duration in which the Moon increases the lead over the Sun by 12∘
or 720′. As the maximum lead that the Moon can have over the Sun is 360∘, there
can be a total of thirty tithis (360÷12). If 𝜃𝑡𝑠 and 𝜃𝑡𝑚 are the true longitudes (in arc
minutes) of the Sun and the Moon respectively at the instant (𝑡𝑐𝑎) of true sunrise
at 𝑄, then the number of tithis elapsed is naturally given by189

𝜃𝑡𝑚 − 𝜃𝑡𝑠
720′ = 𝐸tithi +

𝑟𝑡
720′ , (92)

where 𝐸tithi is the integral number of tithis elapsed and 𝑟𝑡 (arc minutes) is the
elapsed portion of the current tithi before sunrise. If 𝜃̇𝑡𝑠 and 𝜃̇𝑡𝑚, in min/day, are
the true rates of motion of the Sun and the Moon respectively, then the time
elapsed in the current tithi, in ghaṭikās, before sunrise will be given by

= 𝑟𝑡
􏿴𝜃̇𝑡𝑚 − 𝜃̇𝑡𝑠􏿷

× 60 (ghaṭikā𝑠). (93)

Here, the author approximates (𝜃̇𝑡𝑚 − 𝜃̇𝑡𝑠) to 720′/day. Hence, (93) will be
reduced to

𝑟𝑡 × 60
720 = 𝑟𝑡

12 = 𝐸ghaṭikā +
𝑟𝑔
12, (94)

where the integral part 𝐸ghaṭikā gives the ghaṭikās elapsed in the current tithi before
sunrise. Multiplying the fractional part of the elapsed ghaṭikās by 60 gives the
additional vighaṭikās elapsed in the current tithi:

𝑟𝑔 × 60
12 (vighaṭikā𝑠) = 𝑟𝑔 × 5 (vighaṭikā𝑠).

189 See Laghubhāskarīya verses II.26(c,d)–
27, Shukla (1963: 31), Mahābhāskarīya
verses IV.31–32, Shukla (1960: 130), Khaṇḍa-
khādyaka verse I.25, Sengupta (1934),
Karaṇaratna verses I.41–42(a,b), Shukla

(1979: 29–30), Śiṣyadhīvṛddhidatantra verse
II.22, Chatterjee (1981: 43), Laghumānasa
verse IV.4, Shukla (1990: 142), Tantra-
saṅgraha verses II.55–59, Ramasubramanian
and Sriram (2011: 116–118).
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However, as five vighaṭikās correspond to one lipti,190 an additional 𝑟𝑔 liptis
have elapsed in the current tithi. Thus, denoting 𝑟𝑔 liptis as 𝐸lipti, (94) can be
rewritten as:

𝑟𝑡
12 = 𝐸ghaṭikā +

𝐸lipti

12 , (95)

which is equivalent to (91).

16 DETERMINING VIDDHAIKĀDAŚĪ

एकाऽितद्वादशीवृद्धौ नो चेद् वृद्धौ तु षोडश ।
Ԁेकिलղी समे ह्रासे चतु؄ादҭुरं ̡ӈदम् ॥ २५ ॥ ॥ अनु̧؋भ् ॥ 
ekā’tidvādaśīvṛddhau no ced vṛddhau tu ṣoḍaśa |
dvyekaliptī same hrāse catuṣkāduttaraṃ tvidam || 25 || || anuṣṭubh ||
In the case of vṛddhi not being beyond twelve [liptis] (i.e., samavṛddhi),
one [nāḍikā has to be checked], but in the case of [ati]vṛddhi, sixteen
[liptis have to checked]. In sama and hrāsa, two and one lipti [respect-
ively are to be checked]. This [rule] is also in addition to the quartet
[of nāḍikās] before [sunrise which are to be checked for the presence
of daśamī in order to postpone the ekādaśī fast].

The above verse, attributed to Śrī Trivikramapaṇḍitācārya,191 tersely pre-
scribes the rules for postponing the ekādaśī fast based on the type of daśamī-tithi.
It gives the time interval to be checked before the aruṇodayakāla192 for the
presence of daśamī-tithi. The types of the daśamī-tithis and the time interval
before aruṇodayakāla which will lead to the postponement of the ekādaśī fast are
summarized in Table 7.

190 Considering the average duration of
tithi (12∘ or 720′ increase in the lead of the
Moon with respect to the Sun) ≈ 60 ghaṭikās,
then 720 liptis = 60 ghaṭikās ⟹ 12 liptis =
1 ghaṭikā ⟹ 1 lipti = 5 vighaṭikās.
191 See Ekādaśī-nirṇaya verse 30, B. P. N.

Rao (1994: 34), Smṛtimuktāvalī, Giri Ācārya
(2016: 147–148), Karmasiddhānta, Rāmanāth-
ācārya (2013: 93).
192 Aruṇodayakāla is the time duration of
four ghaṭikās before sunrise.
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Type of Time before
daśamī-tithi aruṇodayakāla

hrāsa 1 lipti
sama 2 liptis
samavṛddhi 1 ghaṭikā
ativṛddhi 16 liptis

Table 7: Time before aruṇodayakāla to be checked for the presence of daśamī .

16.1 EXPLANATION
The Ekādaśī-nirṇaya of Śrī Vādirājatīrtha provides a lucid explanation of this
verse,193 which is illustrated using Figure 20. Figure 20a depicts the tithi
transitions daśamī-ekādaśī , ekādaśī-dvādaśī , and dvādaśī-trayodaśī over the course
of three days: Day-1, Day-2, and Day-3, which are indicated by the time interval
between the instants of sunrise, i.e., 𝑡1 to 𝑡2, 𝑡2 to 𝑡3, and 𝑡3 to 𝑡4, respectively. Fig-
ure 20b depicts an exaggerated view of Day-1 in Figure 20a. This figure further
depicts the division of the day into sixty ghaṭikās and indicates the time duration
of four ghaṭikās (56–60) before sunrise as aruṇodayakāla.194 Generally, people
fast on the day when ekādaśī is observed at sunrise, i.e., on Day-2, and break
the fast during the morning hours of the next day, i.e., on Day-3, strictly before
the dvādaśī lapses. Śrī Madhvācārya, in his Kṛṣṇāmṛtamahārṇava, prescribes a
general rule to postpone the ekādaśī fast.195 According to this rule, even the
tithi at sunrise is ekādaśī , if one observes the presence of daśamī-tithi during and
before the aruṇodayakāla, as depicted in Figure 20c and Figure 20d respectively,
one should avoid fasting on ekādaśī day, i.e., on Day-2, and observe it on dvādaśī
day, i.e., on Day-3. This phenomenon of ekādaśī being hit (postponed) by
daśamī is called viddhaikādaśī . The time period before sunrise, which is checked
for the presence of daśamī for the occurrence of viddhaikādaśī is referred to as
daśamīvedhakāla.

193 See Ekādaśī-nirṇaya verses 40–56,
B. P. N. Rao (1994: 37–41). Also, see
Smṛtimuktāvalī, Giri Ācārya (2013: 339–368),
and Śrī Vādirājara Kṛtigaḷu composition 36,
Nāgaratna (1980: 96).
194 See Kṛṣṇāmṛtamahārṇava verse 131(a,b),
Bannañje (1974a: 91), and Ekādaśī-nirṇaya
verse 3(a,b), B. P. N. Rao (1994: 25), which
state चतसो घिटकाः पातररुणोदय उयत।े

195 See Kṛṣṇāmṛtamahārṇava verse 129,
Bannañje (1974a: 91). Also, see Ekādaśī-
nirṇaya verse 2, B. P. N. Rao (1994: 25),
which state अरुणोदयवलेायां दशमी यिद दृश्यत।े
पापमलंू तदा ज्ञयेम ्  एकादश्यपुवासनम ् ॥ Further,
see Kṛṣṇāmṛtamahārṇava verse 121(c,d),
Bannañje (1974a: 90), which states उपोया
वादशी पणु्या पवू र्िवधां पिरयजते ् ॥
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Śrī Trivikramapaṇḍitācārya, through the above verse, clarifies Śrī Mad-
hvācārya’s general rule of viddhaikādaśī and provides specific time intervals
before aruṇodayakāla for different types of daśamī-tithi. These time intervals
denoted by ‘𝑥’ are given in the table within the Figure 20d. The types of
daśamī-tithi are elucidated as follows.

Based on the duration of the daśamī-tithi, it is broadly classified into ativṛddhi,
samavṛddhi, sama, and hrāsa. When the duration of daśamī-tithi exceeds 60 ghaṭikās
by either 5 or 6 ghaṭikās, i.e., 65 or 66 ghaṭikās, it is called ativṛddhi.196 When the
duration of daśamī-tithi exceeds 60 ghaṭikās by either 1, 2, or 3 ghaṭikās, i.e., 61, 62,
or 63 ghaṭikās, it is reckoned as samavṛddhi.197 When the duration of daśamī-tithi
is 60 ghaṭikās, it is called sama.198 When the duration of daśamī-tithi is less than
60 ghaṭikās, it is called hrāsa.199

In the case of ativṛddhi, 16 liptis (equivalent to 80 vighaṭikās, or 1 ghaṭikā and
20 vighaṭikās)200 prior to aruṇodayakāla is checked for the presence of daśamī .201

In the case of samavṛddhi, 1 ghaṭikā (equivalent to 12 liptis) prior to aruṇodayakāla
is checked for the presence of daśamī .202 In the case of sama and hrāsa, 2 liptis
(equivalent to 10 vighaṭikās) and 1 lipti (equivalent to 5 vighaṭikās), respectively,
prior to aruṇodayakāla, are checked for the presence of daśamī .203 These four clas-

196 See Ekādaśī-nirṇaya verse 44(c,d),
B. P. N. Rao (1994: 37–38), which states
षपचघिटकाविृधरितविृधिरहोच्य्त॥े Bannañje
(1974b: 193) gives an example of ativṛddhi
as: the duration of tithis, in ghaṭikās, after
sunrise in the three successive days Day-1,
Day-2, and Day-3 are daśamī - 45 ghaṭikās,
ekādaśī - 50 ghaṭikās, and dvādaśī - 55
ghaṭikās, respectively. The duration of
ekādaśī-tithi will be equal to the sum of
the time durations of ekādaśī in Day-1 and
Day-2, i.e., (15 + 50 =) 65 ghaṭikās. As the
duration of tithi will not vary significantly
over two successive days, the duration
of daśamī-tithi is ≈ 65 ghaṭikās. Bannañje
(1974b: 192) also assumes the duration of
tithi with four ghaṭikās excess of 60 ghaṭikās,
i.e., 64 ghaṭikās, also as ativṛddhi.
197 See Ekādaśī-nirṇaya verse 45(a,b),
B. P. N. Rao (1994: 37–38), which states
एकिवयािमका विृधः समविृधिरित मतृा। Similar
to ativṛddhi, Bannañje (1974b: 193) gives
an example of samavṛddhi as: daśamī - 23
ghaṭikās, ekādaśī - 24 ghaṭikās, dvādaśī - 25
ghaṭikās. It implies that the duration of
daśamī-tithi is ≈ 61 ghaṭikās.
198 Similarly, Bannañje (1974b: 193) gives

an example of sama as: daśamī - 46.5 ghaṭikās,
ekādaśī - 47 ghaṭikās, dvādaśī - 46.5 ghaṭikās.
It implies that the duration of daśamī-tithi is
≈ 60 ghaṭikās.
199 Similarly, Bannañje (1974b: 193) gives
an example of hrāsa as: daśamī - 55 ghaṭikās,
ekādaśī - 50 ghaṭikās, dvādaśī - 45 ghaṭikās. It
implies that the duration of daśamī-tithi is
≈ 55 ghaṭikās.
200 Refer footnote 190. Also see, Ekādaśī-
nirṇaya verses 47(c,d)–48(a,b), B. P. N. Rao
(1994: 38), which state िलितिव र्घिटकाः पच िलतयो
वादशवै त॥ु घिटकैकेित िवज्ञयेा योितःशापमाणतः।
201 See Ekādaśī-nirṇaya verses 53(c,d)–
54(a,b), B. P. N. Rao (1994: 40), which state
अितवृधावटयगुमटवं िह षोडश॥ िलतयो वधेहीनाः
यःु...।
202 See Ekādaśī-nirṇaya verses 54(c,d)–55,
B. P. N. Rao (1994: 40), which state सित सा-
ये न विृधचिेदित यावतदटकम॥् चतुटयं च िलितनामवें
वादशिलतयः। घिटकैका भवेसवा र् दशमी वधेविज र्ता।
203 See Ekādaśī-nirṇaya verses 50(c,d)–
51(a,b), B. P. N. Rao (1994: 39), which state
समे िविलितका मातं हास ेवकैेव सा मता॥ चतुकादुतरं
वतेदशमी वधेवज र्नम ् ।
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Day-1

𝑡1

Day-2

𝑡2

Day-3

𝑡3 𝑡4
daśamī ekādaśī dvādaśī trayodaśī

(a)

𝑡1

Day-1

𝑡2aruṇodayakāla

0 1 55 56 57 58 59 60ghaṭikās
daśamī ekādaśī

(b)

𝑡1

Day-1

𝑡2aruṇodayakāla

0 1 55 56 57 58 59 60ghaṭikās
daśamī ekādaśī

(c)

Day-1

𝑡1 𝑡2aruṇodayakāla

0 1 56 57 58 59 60ghaṭikās

𝑥

daśamī ekādaśī

Daśamī tithi ‘𝑥’ in

Type Duration in ghaṭikās vighaṭikās

hrāsa < 60 5
sama = 60 10
samavṛddhi 61, 62 or 63 60
ativṛddhi 65 or 66 80

(d)

Figure 20: (a) A diagram showing the transition of tithis, daśamī , ekādaśī , and
dvādaśī across three days, (b,c and d) Diagrams showing the tithi transition from
daśamī to ekādaśī without daśamīvedha, daśamīvedha in aruṇodayakāla, and daśamī-
vedha in 𝑥 vighaṭikās before aruṇodayakāla with different values of 𝑥 tabulated.
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sifications of viddhaikādaśī depending on the type of daśamī-tithi are summarized
in Figure 20d.

In conclusion, if one observes the presence of daśamī-tithi in the time inter-
val of ‘4 ghaṭikās + 𝑥 vighaṭikās’ before sunrise, it is considered as viddhaikādaśī ,
prompting the postponement of the fast to the following day.

17 FASTING DAYS OF VIṢṆUPAÑCAKA -VRATA

उदय׬ािपनी दशार् पौणर्मासी तु या̠मका ।
मԅाह्न׬ािपनी श्रोणा उपो؛ा िवؑुतҺरैः ॥ २६ ॥ ॥ अनु̧؋भ् ॥ 
udayavyāpinī darśā paurṇamāsī tu yāmikā |
madhyāhnavyāpinī śroṇā upoṣyā viṣṇutatparaiḥ || 26 || || anuṣṭubh ||
The new moon (darśā) prevailing in the morning (udayavyāpinī),
the full moon (paurṇamāsī) lasting for a yāma, and the Śravaṇā-
nakṣatra (śroṇā) prevailing in the afternoon (madhyāhnavyāpinī) are
[considered] fast-worthy by the followers of Viṣṇu.

The above verse prescribes the days of a month on which the devotees of
Viṣṇu shall observe fast. They are the days in which:

• the amāvāsyā tithi prevails in the morning (prātaḥ-kāla).204

• the pūrṇimā tithi prevails at least for the duration of a yāma (3 hours or 7.5
ghaṭikās)205 after sunrise.

• the Śravaṇā nakṣatra prevails till noon (madhyāhna-kāla) after sunrise.

Śrī Kṛṣṇācārya, in his Smṛtimuktāvalī, also provides a similar verse and attributes
it to Bhaviṣyat-purāṇa.206

In common parlance, a vrata observed for Viṣṇu on the prescribed five days of
a month — the above three days along with the two ekādaśīs — for the duration
of a year (12 × 5 = 60 fasting days) is called Viṣṇupañcaka.207

204 In Smṛtimuktāvalī, Śrī Kṛṣṇācārya states
thus: Vedavyāsa divides the day (time
between sunrise and sunset) into five parts;
each equal to three muhūrtas. They are:
prātaḥ-kāla (morning), saṅgava-kāla, mad-
hyāhna-kāla (noon) , aparāhṇa-kāla (after-
noon), and sāyam-kāla (evening) in order.
See Giri Ācārya (2013: 250).

205 See Bannañje (1974b: 193), Monier-
Williams (1986: 850).
206 Śrī Kṛṣṇācārya cites the verse:
उदययापको दशर्ः पौण र्मासी त ु यािमका। मयानया-
िपनी शोणा उपोया िवणतुपरःै॥ See Giri Ācārya
(2013: 533).
207 See Giri Ācārya (2013: 533–536).
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18 REAPING THE FULL BENEFITS OF A FAST

उपवासफलप्रेքुजर्ह्याद् भुͿचतु؋यम् । 208

पूवार्परे तु सायाहे्न सायֲातुأ मԅमे ॥ २७ ॥ ॥ अनुटभु ॥् 
upavāsaphalaprepsurjahyād bhuktacatuṣṭayam |
pūrvāpare tu sāyāhne sāyamprātastu madhyame || 27 || || anuṣṭubh ||
One desirous of the benefits of the fast shall forego the quartet of
meals — in the evenings of the previous and the next day [of the
fast], and in the morning and evening of the middle (on the day of
the fast).

The above verse prescribes the four meals that are to be foregone to enhance
the benefits of a fast. These comprise the morning and evening meals on the day
of the fast itself, along with the evening meals on the days preceding and follow-
ing the fast. For instance, in the context of an ekādaśī fast, this means refraining
from consuming the morning and evening meals on ekādaśī-tithi, as well as the
evening meals on daśamī and dvādaśī . It is worth noting that a verse with similar
instruction is found in Skānda-purāṇa.209

19 SAṄKOCA-DVĀDAŚĪ OR SĀDHANA-DVĀDAŚĪ

कलाध͂ द्वादशी ं दृ؍ा िनशीथादूԈर्मेव तु ।
आमԅाह्नाः िक्रयाः सवार्ः कतर्׬ाः शֺुशासनात् ॥ २८ ॥ ॥ अनु̧؋भ् ॥ 
kalārdhaṃ dvādaśīṃ dṛṣṭvā niśīthādūrdhvameva tu |
āmadhyāhnāḥ kriyāḥ sarvāḥ kartavyāḥ śambhuśāsanāt || 28 || || anuṣṭubh ||
Upon knowing [that] dvādaśī [lasts] for half of a kalā (kalārdhaṃ)210

[after sunrise], all the rituals that have to be performed till noon are
to be performed after midnight [of the previous day] as per the in-
struction of Śambhu.211

The above verse is excerpted from Śrī Madhvācārya’s Kṛṣṇāmṛtamahārṇava.212

It gives instructions on how to perform dvādaśī vrata, in the case where there are
only a few minutes of dvādaśī left after sunrise.213

208 Bannañje (1974b: 193) notes an altern-
ate reading भतचतुटयम।्
209 See Karaṇam and Vādirājācārya
(2002: 267), which notes
दशयाचवै नतच एकादश्यामपुोषणम।् वादश्यामकेभंुत
च अखण्डा इित कयत॥े २.५.१२.२३ ॥
210 As 1 kalā = 1 lipti, from footnote 190, 1
kalārdhaṃ = 2.5 vināḍikās. Also, See Vyāsa-
dāsa (2007: 44), and Bannañje (1974b: 193).

211 Vyāsadāsa (2007: 44) interprets
Śambhu as Caturmukha Brahma, while it is
generally interpreted as Īśvara, Giri Ācārya
(2013: 459).
212 See Smṛtimuktāvalī, Giri Ācārya
(2013: 459).
213 See Smṛtimuktāvalī, Giri Ācārya
(2013: 457–465).
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A typical dvādaśī vrata is an act of consuming a meal in the morning of dvādaśī
tithi within the stipulated time (strictly before the dvādaśī elapses) thus com-
pleting the ekādaśī vrata (fast). The consequences of transgressing dvādaśī vrata
are elucidated in Kṛṣṇāmṛtamahārṇava.214 Owing to all the consequences men-
tioned, how could one complete a meal (after performing all the daily rituals
like Sandhyāvandana , etc.) if there are only a few minutes of dvādaśī tithi left after
sunrise? This is the problem addressed by the above verse.

To avoid the violation of dvādaśī vrata, it is prescribed that all the activities
that are usually to be performed till afternoon (like Sandhyāvandana , Aupāsana,
etc., in the morning and Devatārcana, Vaiśvadeva, etc., in the afternoon) are to be
completed before the sunrise by starting them from the midnight of the previous
day. In common parlance, such a dvādaśī which remains a few minutes after
sunrise, is known as Saṅkoca-dvādaśī or Sādhana-dvādaśī.215

20 DISCUSSION

THE TITHINIRṆAYA UNIQUELY COMPRISES both the procedure to compute the tithi
at sunrise for an observer at a latitude of 12.78∘ and the religious injunctions

for fasting days dedicated to Lord Viṣṇu. It features 28 verses composed in three
different meters that enhance the beauty of the text. While most verses are set
in the classical anuṣṭubh meter, the author occasionally employs the melodious
vaṃśastha and āryā meters too. Remarkably, all kaṭapayādi phrases employed in
the Tithinirṇaya, such as māpati (615), murāri (225), etc., can be interpreted as
epithets of Viṣṇu. This appears to indicate the author’s deep devotion towards
this deity.

The astronomical portions of the Tithinirṇaya adhere to a typical karaṇa genre
and adopt Haridatta’s parahita modified Āryabhaṭīya parameters. As is common
in the karaṇa genre, Tithinirṇaya provides a simple procedure for computing tithi,
avoiding complex astronomical formulae by using interpolation for corrections
such as bhujāntara, manda, and caradala.216 It ignores the udayāntara correction,
does not provide expressions for the true rates of motion of the Sun and the
Moon, and even approximates the duration of the tithi, a varying quantity, to 60
ghaṭikās. Since the procedure involves only basic mathematical operations, the
text appears to be intended for laypeople who are not well-versed in astronomy.

In our work, we enhance the understanding of the procedures given in the
Tithinirṇaya by stating the necessary assumptions, providing the mathematical

214 See Kṛṣṇāmṛtamahārṇava verses 157–159,
Bannañje (1974a: 94).
215 Here, saṅkoca means ‘prevailing for
a short time,’ and sādhana means ‘to be
achieved with great effort.’ See Giri Ācārya

(2013: 463).
216 The interpolated values of Rsine are
utilized in bhujāntara, and manda corrections.
The interpolated values of cara (2Δ𝛼) are
used in caradala correction.
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and geometric rationales, and offering comments at each stage. We have elab-
orated on the correct sequence of corrections and discussed our disagreements
with the interpretations of the commentators Govindācārya and Vyāsadāsa. Fur-
ther, we have attempted to explain the concept of viddhaikādaśī , stated in verse 25,
in the light of Śrī Vādirājatīrtha’s Ekādaśī-nirṇaya. We have studied the question
of the authorship of the Tithinirṇaya and argued that Śrī Trivikramapaṇḍitācārya
could be the probable author of the text. We have discussed the similarities in
the verses, expressions, and procedures between Tithinirṇaya and the astronom-
ical texts such as Grahacāranibandhanasaṅgraha, Laghubhāskarīya and its commen-
taries, and Karaṇaratna, as well as the religious texts such as Bhaviṣyat-purāṇa,
Skānda-purāṇa, and Kṛṣṇāmṛtamahārṇava.

In conclusion, the Tithinirṇaya is a simple handbook for computing the tithi
at sunrise and determining the day on which ekādaśī fast must be observed. As
the observance of the ekādaśī fast is a core tenet of the Mādhva tradition, Tithi-
nirṇaya holds great significance for the community and remains in use in several
maṭhas. However, it may be noted that, based on the cara values given in the
text, this work appears to be intended only for observers located at a latitude
(𝜙) of 12.78∘. Additionally, the parahita system on which the Tithinirṇaya is based
has been superseded by Parameśvara’s dṛggaṇita system and others. Therefore,
certain revisions are necessary to align computations with observations in the
present day.

HISTORY OF SCIENCE IN SOUTH ASIA 13 (2025) 50–152



YELLURU, SREERAM, PAI AND KOLACHANA 133

ACKNOWLEDGEMENTS

THE AUTHORS THANK Prof. M. S. Sriram for providing valuable insights on the
bhujāntara correction. They sincerely thank Śrīnivāsa Korlahaḷḷi, Mysore

for providing crucial details regarding the authorship of Tithinirṇaya. They also
thank Rāmanāthācārya, Udupi and Viṣṇudāsa Nāgendrācārya, Mysore for shar-
ing the facsimile of Madhusūdana Bhikṣu’s commentary on Tithinirṇaya. The au-
thors express their obeisances to all Pontiffs of maṭhas for providing access to the
manuscripts. They also thank the Indian Knowledge Systems Division, Ministry
of Education, Government of India, for the financial support provided for their
research through the Centre for Indian Knowledge Systems at Indian Institute of
Technology Madras.

HISTORY OF SCIENCE IN SOUTH ASIA 13 (2025) 50–152



134 TITHINIRṆAYA: A CALENDRICAL TEXT

APPENDIX A: SYMBOLS AND THEIR DESCRIPTION

Symbol Description

𝐴 Kali-ahargaṇa, or the civil days elapsed since the start of kaliyuga
(kalyādi)

𝐴′ Civil days elapsed since the epoch
𝐷𝑐 Civil days in mahāyuga
𝑆𝑦 Śaka years elapsed since kalyādi
𝐾𝑦 Kali years elapsed since kalyādi
𝐾𝑒
𝑦 Kali years elapsed till epoch

𝐾𝑠𝑒
𝑦 Kali years elapsed since the epoch
𝑔 Multiplier
ℎ Divisor

𝐸tithi Number of tithis elapsed
𝐸ghaṭikā Ghaṭikās elapsed in the current tithi
𝐸lipti Additional liptis elapsed in the current tithi

Locations and measurements on the spherical Earth

𝐿 Laṅkā, or the point of intersection of prime meridian and equator
𝐿′ Point of intersection of observer’s meridian and equator
𝐿′𝐸 𝐿′ with observer’s meridian aligned to the east of prime meridian
𝐿′𝑊 𝐿′ with observer’s meridian aligned to the west of prime meridian
𝑄 Location of the observer
𝜙 Latitude of the observer (𝑄)
𝐶 Circumference of the spherical Earth in yojanas
Δ𝑑 Distance between prime meridian and observer’s meridian in

yojanas along the equator (𝐿𝐿′)
Δ𝑙 Longitudinal difference between observer’s meridian and prime

meridian
𝑃𝑁 North Pole

continued …

HISTORY OF SCIENCE IN SOUTH ASIA 13 (2025) 50–152



YELLURU, SREERAM, PAI AND KOLACHANA 135

…continued

Symbol Description

𝑃𝑆 South Pole
Time instants and time differences

𝑡𝑘 Time instant of mean sunrise at Laṅkā (𝐿) at kalyādi
𝑡𝑒 Time instant of mean sunrise at Laṅkā (𝐿) at epoch
𝑡∘ Time instant of mean sunrise at Laṅkā (𝐿) on kali-ahargaṇa 𝐴
𝑡𝑑 Time instant of mean sunrise at 𝐿′

𝑡𝑏 Time instant of true sunrise at 𝐿′

𝑡𝑢 Time instant of true sunrise at 𝐿′ considering the obliquity of the
ecliptic

𝑡𝑐𝑎 Time instant of true sunrise at 𝑄
Δ𝑡𝑑 Time difference (𝑡𝑑 ∼ 𝑡∘) between the instants of mean sunrise at

𝐿′ and 𝐿
Δ𝑡𝑏 Time difference (𝑡𝑏 ∼ 𝑡𝑑) between the instants of true and mean

sunrise at 𝐿′

Δ𝑡𝑢 Time difference (𝑡𝑢 ∼ 𝑡𝑏) between the instants of true sunrise at 𝐿′
with and without considering the obliquity of the ecliptic

Δ𝑡𝑐𝑎 Time difference (𝑡𝑐𝑎 ∼ 𝑡𝑢) between the instants of true sunrise at
𝑄 and 𝐿′

Elements of Celestial Sphere

𝑍𝐿 Zenith of the observer at Laṅkā (𝐿)
𝑍𝐿′ Zenith of the observer at 𝐿′

𝑍𝑄 Zenith of the observer at 𝑄
𝐸 East cardinal point
𝑊 West cardinal point
𝑃𝑀 Prime Meridian
𝑆 Sun
𝑆𝑑 Deśāntara corrected Sun

continued …
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…continued

Symbol Description

𝑆𝑏 Bhujāntara corrected Sun
𝑆𝑢 Udayāntara corrected Sun
𝑆−90 A fictitious point object 90∘ behind the Sun
𝑆−90𝑑 A fictitious point object 90∘ behind the deśāntara corrected Sun

(𝑆𝑑)
𝑆−90𝑏 A fictitious point object 90∘ behind the bhujāntara corrected Sun

(𝑆𝑏)
DoV Direction of View
𝑈 Apogee
𝑀 Starting point of the sign Meṣa(meṣādi)
𝑅 Radius of the orbit

𝑟 (or) 𝑟𝑑 Eccentricity of the orbit
𝐾 (or) 𝐾𝑑 Manda-karṇa, or the true distance of the planet

𝑘 Kendra, or anomaly of the planet
𝑏 Bhuja of an arc
Γ Vernal equinox
Ω Autumnal equinox
𝜖 Obliquity of the ecliptic
𝛿𝑠 Declination of the Sun
𝛼𝑠 Right ascension of the Sun
𝜃Γ Motion of vernal equinox
𝐶Γ A fictitious celestial body on the ecliptic moving opposite to the

direction of the Sun with the time period of revolution equal to
the oscillation time period of equinox

𝐴̄ Ayana or the sāyana longitude (measured clockwise) of the ficti-
tious celestial body 𝐶Γ

𝐼 Point on the 6 o’clock circle indicating the point of sunrise for an
observer (𝐿′) on the equator

continued …
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…continued

Symbol Description

𝐽 Point on the 6 o’clock circle indicating the point of sunset for an
observer (𝐿′) on the equator

𝑋 Point of sunrise for an observer (𝑄) situated in the northern latit-
ude

𝑌 Point of sunset for an observer (𝑄) situated in the northern latit-
ude

Δ𝛼 Ascensional difference

Revolutions

𝑅𝑠 Revolutions of the Sun in mahāyuga
𝑅𝑚 Revolutions of the Moon in mahāyuga

𝑅𝑚_𝑎𝑝 Revolutions of the Moon’s apogee in mahāyuga
𝑅𝑐
𝑚 Corrected revolutions of the Moon in mahāyuga due to parahita

𝑅𝑐
𝑚_𝑎𝑝 Corrected revolutions of the Moon’s apogee in mahāyuga due to

parahita

Rates of Motion

𝜃̇∘𝑝 Mean rate of motion of the planet (𝑝)
𝜃̇∘𝑠 Mean rate of motion of the Sun
𝜃̇∘𝑚 Mean rate of motion of the Moon

𝜃̇∘𝑚_𝑎𝑝 Mean rate of motion of the Moon’s apogee
𝜃̇𝑐𝑚 Corrected mean rate of motion of the Moon due to parahita

𝜃̇𝑐𝑚_𝑎𝑝 Corrected mean rate of motion of the Moon’s apogee due to
parahita

𝜃̇𝑡𝑝 True rate of motion of the planet (𝑝)
𝜃̇𝑡𝑠 True rate of motion of the Sun
𝜃̇𝑡𝑚 True rate of motion of the Moon

Corrections

continued …
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…continued

Symbol Description

Δ∘
𝑝 Parahita correction for the mean longitude of the planet 𝑝

Δ̇∘
𝑝 Parahita correction for the mean rate of motion of the planet 𝑝

Δ̇∘
𝑚 Parahita correction for the mean rate of motion of the Moon

Δ̇∘
𝑚_𝑎𝑝 Parahita correction for the mean rate of motion of the Moon’s apo-

gee
Δ𝑑
𝑝 Deśāntara correction of the planet (𝑝)

Δ𝑑
𝑠 Deśāntara correction of the Sun

Δ𝑑
𝑚 Deśāntara correction of the Moon

Δ𝑑
𝑚_𝑎𝑝 Deśāntara correction of the Moon’s apogee
𝑑Δ𝑚

𝑠 Manda correction of the deśāntara corrected Sun (𝑆𝑑)
𝑑Δ𝑏

𝑠 Mean bhujāntara correction of the deśāntara corrected Sun (𝑆𝑑)
𝑑Δ𝑏

𝑚 Mean bhujāntara correction of the deśāntara corrected Moon
𝑚Δ𝑏

𝑠 True bhujāntara correction of the manda corrected Sun
𝑏Δ𝑚

𝑠 Manda correction of the bhujāntara corrected Sun (𝑆𝑏)
𝑏Δ𝑚

𝑚 Manda correction of the bhujāntara corrected Moon
Δ𝑢
𝑝 Udayāntara correction of the celestial body 𝑝

Δ𝑐𝑎
𝑝 Caradala correction of the celestial body 𝑝

Δ𝑐𝑎
𝑠 Caradala correction of the Sun

Δ𝑐𝑎
𝑚 Caradala correction of the Moon

Longitudes

𝜃𝑘𝑠 Mean longitude of the Sun at the instant (𝑡𝑘) of mean sunrise at
Laṅkā (𝐿) at kalyādi

𝜃𝑘𝑚 Mean longitude of the Moon at the instant (𝑡𝑘) of mean sunrise at
Laṅkā (𝐿) at kalyādi

𝜃𝑘𝑚_𝑎𝑝 Mean longitude of the Moon’s apogee at the instant (𝑡𝑘) of mean
sunrise at Laṅkā (𝐿) at kalyādi

continued …
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…continued

Symbol Description

𝜃𝑐𝑘𝑚 Corrected mean longitude of the Moon at the instant (𝑡𝑘) of mean
sunrise at Laṅkā (𝐿) at kalyādi

𝜃𝑐𝑘𝑚_𝑎𝑝 Corrected mean longitude of the Moon’s apogee at the instant (𝑡𝑘)
of mean sunrise at Laṅkā (𝐿) at kalyādi

𝜃𝑒𝑠 Mean longitude of the Sun at the instant (𝑡𝑒) of mean sunrise at
Laṅkā (𝐿) at epoch

𝜃𝑒𝑚 Mean longitude of the Moon at the instant (𝑡𝑒) of mean sunrise at
Laṅkā (𝐿) at epoch

𝜃𝑒𝑚_𝑎𝑝 Mean longitude of the Moon’s apogee at the instant (𝑡𝑒) of mean
sunrise at Laṅkā (𝐿) at epoch

𝜃∘𝑝 Mean longitude of the planet (𝑝) at the instant (𝑡∘) of mean sun-
rise at Laṅkā (𝐿) for kali-ahargaṇa 𝐴

𝜃∘𝑠 Mean longitude of the Sun at the instant (𝑡∘) of mean sunrise at
Laṅkā (𝐿) for kali-ahargaṇa 𝐴

𝜃∘𝑚 Mean longitude of the Moon at the instant (𝑡∘) of mean sunrise at
Laṅkā (𝐿) for kali-ahargaṇa 𝐴

𝜃∘𝑚_𝑎𝑝 Mean longitude of the Moon’s apogee at the instant (𝑡∘) of mean
sunrise at Laṅkā (𝐿) for kali-ahargaṇa 𝐴

𝜃𝑠_𝑎𝑝 Fixed longitude of the Sun’s apogee
𝜆𝑠 Sāyana longitude of the Sun

Resulting longitudes due to corrections

𝜃𝑑𝑝 Mean longitude of the planet (𝑝) at the instant (𝑡𝑑) of mean sun-
rise at 𝐿′

𝜃𝑑𝑠 Mean longitude of the Sun at the instant (𝑡𝑑) of mean sunrise at
𝐿′

𝜃𝑑𝑚 Mean longitude of the Moon at the instant (𝑡𝑑) of mean sunrise at
𝐿′

𝑑𝜃𝑏𝑠 Mean longitude of the Sun at the instant (𝑡𝑏) of true sunrise at 𝐿′
𝑑𝜃𝑏𝑚 Mean longitude of the Moon at the instant (𝑡𝑏) of true sunrise at

𝐿′

continued …
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…continued

Symbol Description

𝑑𝜃𝑚𝑠 True longitude of the Sun at the instant (𝑡𝑑) of mean sunrise at 𝐿′
𝑑𝜃𝑚𝑚 True longitude of the Moon at the instant (𝑡𝑑) of mean sunrise at

𝐿′
𝑏𝜃𝑚𝑝 True longitude of the planet (𝑝) at the instant (𝑡𝑏) of true sunrise

at 𝐿′
𝑏𝜃𝑚𝑠 (𝑚𝜃𝑏𝑠) True longitude of the Sun at the instant (𝑡𝑏) of true sunrise at 𝐿′
𝑏𝜃𝑚𝑚 (𝑚𝜃𝑏𝑚) True longitude of the Moon at the instant (𝑡𝑏) of true sunrise at 𝐿′

𝜃𝑢𝑝 True longitude of the planet (𝑝) at the instant (𝑡𝑢) of true sunrise
at 𝐿′ considering the obliquity of the ecliptic

𝜃𝑢𝑠 True longitude of the Sun at the instant (𝑡𝑢) of true sunrise at 𝐿′
considering the obliquity of the ecliptic

𝜃𝑢𝑚 True longitude of the Moon at the instant (𝑡𝑢) of true sunrise at 𝐿′
considering the obliquity of the ecliptic

𝜃𝑡𝑝 True longitude of the planet (𝑝) at the instant (𝑡𝑐𝑎) of true sunrise
at 𝑄

𝜃𝑡𝑠 True longitude of the Sun at the instant (𝑡𝑐𝑎) of true sunrise at 𝑄
𝜃𝑡𝑚 True longitude of the Moon at the instant (𝑡𝑐𝑎) of true sunrise at

𝑄
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APPENDIX B: PHRASE, ITS NUMBER, AND THE
CORRESPONDING MEANING

Phrase Number Meaning

Section 3: Verses 2 − 3

bhūśrī-
bhinnāki-
cintya

1610424 Contemplated [also] by heavenly (liberated)
souls who are different [in nature] from
Bhūdevī and Śrīdevī (forms of Mahālakṣmī)

garuḍa-
dhyeya

11323 One who is meditated upon by Garuḍa (vehicle
of Viṣṇu; eagle)

dhīsūnu-
nāga

30079 From whose mind the śāstras spring forth

deśādhāra-
harārpakam

11; 28, 29, 58 One who imparts the sustenance and dissolu-
tion of the Earth

kāla 31 One who controls Time
go 3 One who is omniscient

Section 4: Verse 4

ananta 600 Infinite in terms of attributes (knowledge, com-
passion, etc.), time and space

baudhāṅga-
tulya

16393 One who treats the knowledgeable ones as his
own

śuka 15 One who shines magnificently
prājñāñjalibhṛd 43802 One who receives the prayers of the learned, or

one who holds the jñāna-mudrā
tāraśobhā-
tinākinī

01; 06, 45, 26 One who surpasses the splendor of stars in the
heaven (female form of Viṣṇu, Mohinī)

Section 5: Verse 5

drāgarāgā 3232 One who instantly bestows the virtue of non-
attachment to worldly things (vairāgya)

nibhā 40 [One who has] splendor
jagat-
senāṅga

30738 One who commands the army in the world

continued …
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…continued

Phrase Number Meaning

śreṣṭha-
cintyo’mbun-
ā’rcane

06; 03, 16, 22 While being worshiped with consecrated wa-
ters by the demigods (śreṣṭha), He is [the One
who is] contemplated upon

Section 6: Verses 6 − 7

pāpa 11 One who delivers sins to the people according
to their deeds

arka 10 One who is worshiped
anarka 100 One who is worshiped by Vāyu
sānubhū 407 One who is complete [without blemishes] and

[hence] followed by Mahālakṣmī

Section 7: Verses 8 − 9

divya 18 One who is heavenly, not made up of earthly
matter, one who is playful

praja 82 One who sustains the people
duṣṭāstrī 2; 18, 0, 0 One who disfigured the demoness Śūrpaṇakhā

Section 8: Verses 10 − 12

śarīranut 225 Instigator of beings [into action etc.]
dhībhavana 449 The abode of intellect
kathañcana 671 The cause of extraordinary events
naḷījana 890 One by whom people are bound [to the cycle of

birth and death]
mānapaṭu 1105 Skilled in epistemology
śukālapa 1315 One who talks [sweetly] like a parrot
nirāmaya 1520 Without any diseases or blemishes
dhīḥpathika 1719 One who is attained by the path of knowledge
nṛpādhika 1910 Protector of humans [and other beings] while

being superior to them

continued …
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…continued

Phrase Number Meaning

budhonara 2093 One who makes the intellectually weak also
shine [with intelligence]

suptakhara 2267 One by whom Khara is put to sleep (slayer of
the demon Khara)

kalāvirāṭ 2431 Supreme manifestation of arts
mahāśara 2585 One who has a powerful bow (Śārṅga)
dūrasara 2728 One who moves away [from the impious]
dhamīhari 2859 One who has the Vedas as means to attain Him

and One who removes our sins
hasandhara 2978 One who sustains [the world] with a smile
vedanaga 3084 One who has Vedas as his stage
susaṅkula 3177 Melting pot of all good things
tamaḥkhaga 3256 One who impels the sense-organs and the intel-

lect of people
pārabala 3321 Zenith of power
rasābala 3372 The essence of great strength
dhanāvali 3409 One who has heaps of wealth
kālabhṛgu 3431 One who reckons and moves the [wheels] of

Time
jagadbhaga 3438 One who bestows prosperity to the world, or

one who is most prosperous [and therefore to
be attained] in the world

Section 9: Verse 13

śubhāṅga 3∘45′ One with beautiful limbs
śubhrāgra 225 One who is pure and supreme
murāri 225 Kṛṣṇa, the enemy [slayer] of [the demon] Mura

Section 11: Verse 15

sad 7 Blemish-less; one who liberates beings from the
cycle of birth and death

continued …
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…continued

Phrase Number Meaning

aja 80 One without a birth; eternal

Section 12: Verses 16 − 18

dhenubhava 4409 One who resides in cows
māpati 615 Husband of Mahālakṣmī
prabhāratna 242 Ultimate light
dhīsavana 479 One who is attained by knowledge-ritual (by

the act of obtaining His knowledge)
gānasthāna 703 One who is the subject of music
janedhana 908 One who bestows prosperity to people
dehinitya 1088 One whose body is eternal
sugaprāya 1237 One whom the excellent seers reach forever
sāvalokya 1347 One who is known by the scriptures
taṭidvapu 1416 One whose body has the splendor of lightning
navabhāryā 1440 One whose wife (Mahālakṣmī) is newly-wed

and is eternal
jño’nanta 600 One who is omniscient and infinite in terms of

attributes (knowledge, compassion, etc.), time,
and space

Section 14: Verses 19 − 22

arkapūjya 1110 One who is worshipped by the Sun, and also by
the use of arka-leaf (Calotropis gigantea)

sudhākara 2197 The repository and distributor of nectar
ratikrīḍa 3262 One who is playfully engaged [with the

Gopikās]
nutaprabhu 4260 One to whom the lords bow
alaṅkṛṣṇa 5130 One who likes to get decorated
hitoddeśa 5868 One who has the welfare [of the all beings] as

His objective

continued …
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…continued

Phrase Number Meaning

gatibhūta 6463 One who is the destination and the means of at-
tainment [of pure bliss]

smarārdita 6825 One who makes people get afflicted by the God
of Love

śaśidhāta 6955 The sustainer of Moon
anantāṅga 3600 One who has infinite organs (one who is infin-

ite)
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GLOSSARY

amāvāsyā The fifteenth tithi of a dark fortnight. 51, 129
aruṇodayakāla The time duration of four ghaṭikās before sunrise. 125–128

bhuja The angle traversed and yet to be traversed in the odd and even quadrants re-
spectively. 56, 99–101, 106, 136

Caitra The first month of a lunar year. 53
cara Twice the ascensional difference (2Δ𝛼) in vighaṭikās, is the time difference in the

length of the day between the observers at latitude (𝜙) and equator. 55, 56, 59, 61,
105, 113–116, 118, 131, 132, 146

caradala Ascensional difference (Δ𝛼) or half of the cara. 114, 118, 119, 122, 131

daśamī The tenth tithi of a bright or dark fortnight. 125–130, 146, 148
daśamīvedhakāla The time period before sunrise, which is checked for the presence of

daśamī for the occurrence of viddhaikādaśī . 126
dhruva The fixed mean longitudes proposed by the author at the epoch. 50, 64, 68–70,

72–76
dṛggaṇita Computation of the positions and motions of the celestial objects in line with

the observation. 132
dvādaśī The twelfth tithi of a bright or dark fortnight. 126–128, 130, 131

ekādaśī The eleventh tithi of a bright or dark fortnight. 51, 55, 61, 62, 125–132, 148

gata-jyā Elapsed Rsine. 98
ghaṭikā A time unit indicating the sixtieth part of a mean civil day. 78, 114, 123–129, 131,

134, 146–148
grahabhramaṇavṛtta The orbit of a planet. 102
guṇakāra A multiplier. 71
gurvakṣara One-sixtieth of a vināḍikā, or time it takes for a healthy person to pronounce

a long syllable. 114, 115

hāraka A divisor. 71

iṣṭa-jyā Desired Rsine. 98

jyā The semi-chord of a semi-arc.. 98
jyārdha . 98, see jyā

kakṣyāmaṇḍala An imaginary orbit situated at the Earth’s center and sharing the
identical radius as the pratimaṇḍala. 86, 103

kalā A minute in arc units, or one-sixtieth of a degree. 64, 69, 73, 102, 113, 115, 130
kalā-śeṣa Remaining minutes in arc units. 98
kali-ahargaṇa The number of civil days elapsed since the beginning of the kaliyuga. 53,

64, 66, 67, 69, 70, 73, 74, 122, 134, 135, 139
kaliyuga The last quarter of a mahāyuga (4320000 years); the other three quarters being

kṛtayuga, tretāyuga, and dvāparayuga. 53, 65, 72, 107, 134, 146, 147
kalyādi The start of kaliyuga. 59, 65–68, 70, 72–75, 107, 134, 135, 138, 139
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karaṇa A genre of astronomical texts that chooses a recent epoch and dictates a simpler
procedure in computing the aspects of astronomy, i.e., calendrical elements, ec-
lipses, etc., without presenting the rationale involved in the computations. 50, 53,
68, 70, 74, 131

karaṇa Half of the duration of tithi. 52, 55, 147
karṇa Hypotenuse of a right-angled triangle. 85, 103, 136
kendra Also known as anomaly, which is the difference between the longitude of the

planet and its apogee. 92, 93, 95, 98, 101, 102, 136
Kīlaka The forty-second year in a sixty-year cycle. 53

Laṅkā A location on the Earth where the prime meridian (a meridian passing through
Ujjayinī, Svāmīnagara, etc.) intersects the equator. 56–59, 64–70, 72–74, 76–78, 82,
134, 135, 138, 139

lipti . 76, 77, 83, 113, 123–127, 130, 134, see kalā

Mādhva Related to Śrī Madhvācārya. 50, 51, 53, 55, 62, 118, 132
Mādhvas Followers of Śrī Madhvācārya. 51
mahāyuga A time cycle corresponding to 4320000 years, which comprises of kṛtayuga,

tretāyuga, dvāparayuga, and kaliyuga. 59, 60, 67, 70, 71, 73, 75, 94, 134, 137, 146
maṭha A religious establishment in the lineage. 50–52, 54, 55, 132, 133
meṣādi The starting point of Aries (Meṣa), or 0∘ point in the Zodiac (rāśicakra). 65, 66,

82, 84, 85, 88, 91, 92, 99, 103, 105, 107–109, 136, 147
Meṣa-saṅkrānti The Sun’s transition from Pisces (Mīna) to Aries (Meṣa) in the Zodiac

(rāśicakra). 53
muhūrta Time period equal to twice a ghaṭikā. 129

nāḍikā . 78, 123–125, see ghaṭikā
nakṣatra Twenty seventh part (13∘20′) of the ecliptic. 51, 52, 55, 129, 147, 148
nirayana The longitude of a celestial body measured with respect to meṣādi. 105–107,

110, 114

pañcāṅga An Indian calendar, which comprises of five elements: tithi, vāra, nakṣatra,
yoga, and karaṇa. 51, 55

parahita A system proposed by Haridatta to correct the longitudes of the planets, com-
puted from Āryabhaṭīya astronomical parameters, post śaka 444 or kali year 3623.
50, 63, 70–72, 75, 131, 132, 137, 138, 148

pratimaṇḍala . 102, 103, 146, see grahabhramaṇavṛtta
pūrṇimā The fifteenth tithi of a bright fortnight. 51, 129

rāśi One-twelfth part (30∘) of the ecliptic, or a sign in the Zodiac (rāśicakra). 59, 64,
68–70, 73, 74, 95, 99, 101, 105, 108

rāśicakra Zodiac. 99, 100, 147

Sarvamūlagrantha A collection of 37 works attributed to Śrī Madhvācārya. 51
sāyana The longitude of a celestial body measured with respect to the vernal equinox.

105–108, 110, 114, 115, 119, 136
Śālivāhana-śaka The epoch corresponding to the (elapsed) 3179 years of kaliyuga. 50,

53, 71, 72, 134, 147, 148
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śakābdasaṃskāra A correction, in parahita system of Haridatta, to correct the longit-
udes of the planets post śaka 444. 70, 72, 74

śiṣṭa-vartamānajyā Current Rsine difference. 98
Śravaṇā The twenty-second nakṣatra. 51, 129
śukla-caturthī The fourth tithi of a bright fortnight. 53
siddhānta A foundational treatise. 53

tithi Lunar day, or a time unit in which the longitudinal separation between the Moon
and the Sun increases by 12∘. 50, 51, 53–56, 62, 118, 123–132, 134, 146–148

Tithinirṇaya Determination of tithi. 50–57, 59–63, 70, 71, 80, 89, 90, 94, 97, 99, 105, 107,
109, 114, 115, 118, 122, 131–133

trayodaśī The thirteenth tithi of a bright or dark fortnight. 126, 128

vākya A word or a phrase that corresponds to a number. 95, 105, 113
vāra Weekday. 55, 147
viddhaikādaśī The ekādaśī which is being hit (postponed) by daśamī . 54–56, 63, 126,

127, 129, 132, 146
vighaṭikā A time unit indicating the sixtieth part of ghaṭikā. 78, 114–116, 118, 119, 121,

124, 125, 127–129, 146
vilipti A second in arc units: one-sixtieth of a minute, or one-three-thousand-six-

hundredth (1/3600) of a degree. 76, 77, 83, 113, 114
vināḍikā . 78, 130, 146, see vighaṭikā
vrata A holy practice or ritual. 51, 56, 62, 129–131

yāma One-eighth part of a day, or a period of three hours. 129
yoga A time unit in which the sum of the longitudes of the Sun and the Moon increases

by 800′. 52, 55, 147
yojana A unit of length used by Indian astronomers. 58, 76–78, 80, 82, 134

HISTORY OF SCIENCE IN SOUTH ASIA 13 (2025) 50–152



YELLURU, SREERAM, PAI AND KOLACHANA 149

MANUSCRIPTS

Bhikṣu, Madhusūdana (n.d.), “Tithinirṇaya-vyākhyā,” Udupi; Scribe: Hanumatkṛṣṇa.
Manuscript Preserved by Rāmanāthācārya.

Piṣāraṭi, Acyuta (n.d.), “Uparāgakriyākrama,” K. V. Sarma Library; Manuscript No. 358,
Copied by K. V. Sarma from the Manuscript 404 (A,B) of Oriental Research Institute
and Manuscripts Library, Kerala.

PRIMARY SOURCES

Apte, Balavantarāya (1945) (ed.), Mahābhāskarīya of Bhāskara I [With the Commentary
Karma-dīpikā of Parameśvara] (Ānandāśrama Sanskrit Series, 126; Pune: Gangadhar
Bapurao Kale, Ānandāśrama Publications).

Bannañje, Govindācārya (1974a), “Kṛṣṇāmṛtamahārṇava,” in Sarvamūlagranthas of
Śrī Madhvācārya, Saṅkīrṇa-granthas: prakaraṇas, ācāra-granthas, and stotras, v (Akhila
Bhārata Mādhva Mahā Maṇḍala, Jan.), 77–102.

—(1974b), “Tithinirṇaya,” in Sarvamūlagranthas of Śrī Madhvācārya, Saṅkīrṇa-granthas:
prakaraṇas, ācāra-granthas, and stotras, v (Akhila Bhārata Mādhva Mahā Maṇḍala,
Jan.), 175–93.

Chatterjee, Bina (1981) (ed., trans., and introd.), Śiṣyadhīvṛddhidatantra of Lalla [With the
commentary of Mallikārjuna Sūri, Part II] (Babadur Shah Zafar Marg, New Delhi-
110002: Indian National Science Academy).

Giri Ācārya, Rājā (2013) (ed.), Smṛtimuktāvalī: Kālanirṇaya-prakaraṇa of Śrī Kṛṣnācārya
[Source Text and Kannada Translation] (2nd edn., Śrī Rāghavendrasvāmi-maṭha,
Mantrālaya, Andhra Pradesh: Śrī Gurusārvabhauma Saṃśodhanā Mandira).

—(2016) (ed.), Smṛtimuktāvalī of Śrī Kṛṣṇācārya (2nd edn., Śrī Rāghavendra-
svāmi-maṭha, Mantrālaya, Andhra Pradesh: Śrī Gurusārvabhauma Saṃśodhanā
Mandira).

Jhā, Sarvanārāyaṇa (2007) (ed.), Laghubhāskarīya of Bhāskara I [With the Vivaraṇa
of Śaṅkaranārāyaṇa] (Gomati Nagar, Lucknow-226010: Rashtriya Sanskrit San-
sthan, Lucknow Campus), https :// www . csu - lucknow . edu . in / e - books /
laghubhaskariyam/home.html.

Jhā, Śrī Rāmacandra (1983) (ed.), Tithinirṇaya of Rājanātha Miśra (1st edn., Baṅgalāgaḍha,
Darabhaṅgā: Kāmeśvarasiṃha Darabhaṅgā Saṃskṛta Viśvavidyālaya).

Karaṇam, Vādirājācārya, and Vādirājācārya, L. S. (2002) (eds.), Kṛṣṇāmṛtamahārṇava of
Śrī Madhvācārya [Along with six commentaries] (Uttarādi maṭha, Śrī Jayatīrtha Vidyā-
pīṭha, Bangalore – 560004: Viśva Madhva Mahā Pariṣad).

Misra, Pandit Babua (1925) (ed. and introd.), Khaṇḍakhādyaka of Brahmagupta [With the
commentary called Vāsanā bhāṣya by Āmarāja] (University of Calcutta).

Nāgaratna, T. N. (1980) (ed.), Śrī VādirājaraKṛtigaḷu [Compositions of Śrī Vādirāja]
(1st edn., University of Mysore, Manasagangotri, Mysore-570006: Institute of
Kannada Studies).

HISTORY OF SCIENCE IN SOUTH ASIA 13 (2025) 50–152

https://www.csu-lucknow.edu.in/e-books/laghubhaskariyam/home.html
https://www.csu-lucknow.edu.in/e-books/laghubhaskariyam/home.html


150 TITHINIRṆAYA: A CALENDRICAL TEXT

Pai, Venketeswara R., Ramasubramanian, K., Sriram, M. S., and Srinivas, M. D. (2018)
(eds., trans., and comm.), Karaṇapaddhati of Putumana Somayāji (Sources and Studies
in the History of Mathematics and Physical Sciences; New Delhi: Hindustan Book
Agency and Springer).

Rāmanāthācārya, Śatāvadhānī Udupi (2013) (ed.), Karmasiddhānta of Śrī Puruṣottama-
tīrtha (1st edn., Udupi: Īśāvāsyapratiṣṭānam).

Ramasubramanian, K., and Sriram, M. S. (2011) (eds., trans., and comm.), Tantrasaṅgraha
of Nīlakaṇṭha Somayājin (Sources and Studies in the History of Mathematics and Phys-
ical Sciences; New Delhi: Hindustan Book Agency and Springer).

Rao, B. P. Nāgabhūṣaṇa (1994) (ed., trans., and comm.), Ekādaśī-nirṇaya of Śrī Vādirājayati
(Śrī Sode Vādirāja Maṭha, Udupi: Śrī Vādirāja Sevā Saṅgha).

Sarma, K. V. (1954) (ed. and introd.), Grahacāranibandhana of Haridatta [A parahitagaṇita
Manual] (Mylapore, Madras: Kuppuswami Sastri Research Institute); Reprinted
from the Journal of Oriental Research, Madras, Vol: XXIII, 1953-4.

—(1977), “Grahaṇamaṇḍana of Parameśvara,” in Contributions to the Study of the Kerala
School of Hindu Astronomy and Mathematics, i, 2 vols (Chandigarh), chap. 17, 1317–76.

—(2008) (ed. and trans.), Gaṇita-yukti-bhāṣā of Jyeṣṭhadeva, with a commentary by K.
Ramasubramanian, M. D. Srinivas, and M. S. Sriram (Culture and History of Math-
ematics, 4; New Delhi: Hindustan Book Agency).

Sastri, T. S. Kuppanna (1957) (ed., trans., and comm.), Mahābhāskarīya of Bhāskara I [With
the Bhāṣya of Govindasvāmin and the Super-commentary Siddhānta-dīpikā of Param-
eśvara.] (Madras Government Oriental Series; Madras: Government Oriental Man-
uscripts Library).

Sastri, T. S. Kuppanna, and Sarma, K. V. (1962) (eds. and introd.), Vākyakaraṇa [With the
Commentary Laghuprakāśikā by Sundararāja] (Mylapore, Madras-4: Kuppuswami
Sastri Research Institute).

Śāstri, Śrī Viṣvanātha (1940) (ed. and introd.), Tithinirṇaya of Bhaṭṭoji Dīkṣita and Nāgoji
Bhaṭṭa (The Chowkhamba Sanskrit Series, 472; 1st edn., Banares: The Secretary, Jaya
Krishna Das Haridas Gupta, Chowkhamba Sanskrit Series Office).

Sengupta, Prabodh Chandra (1934) (ed., trans., and introd.), The Khaṇḍakhādyaka [An
Astronomical Treatise of Brahmagupta] (University of Calcutta).

Sharma, Ram Swarup (1966) (ed.), Brāhmasphuṭasiddhānta of Brahmagupta [With Vāsanā,
Vijñāna and Hindi Commentaries] (Gurudwara Road, Karol Bagh, New Delhi-5: In-
dian Institute of Astronomical and Sanskrit Research).

Shukla, K. S. (1960) (ed., trans., and introd.), Mahābhāskarīya of Bhāskara I (Hindu Astro-
nomical and Mathematical Texts Series, 3; 1st edn., Lucknow University, Lucknow:
Department of Mathematics and Astronomy); Bhāskara I and his works, Part II.

—(1963) (ed., trans., and introd.), Laghubhāskarīya of Bhāskara I (Hindu Astronomical
and Mathematical Texts Series, 4; 1st edn., Lucknow University, Lucknow: Depart-
ment of Mathematics and Astronomy); Bhāskara I and his works, Part III.

HISTORY OF SCIENCE IN SOUTH ASIA 13 (2025) 50–152



YELLURU, SREERAM, PAI AND KOLACHANA 151

Shukla, K. S. (1979) (ed., trans., and comm.), Karaṇaratna of Devācārya (Hindu Astro-
nomical and Mathematical Texts Series, 5; 1st edn., Lucknow University, Lucknow:
Department of Mathematics and Astronomy).

—(1990) (ed. and introd.), The Laghumānasa of Mañjula [Critical study, text with Eng-
lish Translation, Notes and Appendices] (Babadur Shah Zafar Marg, New Delhi-
110002: Indian National Science Academy).

Shukla, K. S., and Sarma, K. V. (1976) (eds., trans., comm., and introd.), Āryabhaṭīya of
Āryabhaṭa (New Delhi: Indian National Science Academy).

Shyamachar, A. B., and Pandurangi, S. R. (2000) (eds.), Sumadhvavijaya of Śrī Nārāyaṇa-
paṇḍitācārya [With the commentaries Bhāvaprakāśikā: an auto-commentary, Padārtha-
dīpikodbodhikā by Śrī Viśvapatitīrtha and Mandopakāriṇī by Śrī Chalārī Śeṣācārya]
(33/163 10𝑡ℎ B Main Road, I Block, Jayanagar, Bangalore: Dvaita Vedanta Studies
and Research Foundation).

—(2001) (eds.), Sumadhvavijaya of Śrī Nārāyaṇapaṇḍitācārya [With the commentaries
Bhāvaprakāśikā, an auto-commentary, Padārthadīpikodbodhikā by Śrī Viśvapatitīrtha
and Mandopakāriṇī by Śrī Chalārī Śeṣācārya] (No. 11 , Uttaradi Matha Compound,
Sankarapuram, Bangalore – 4: Dvaita Vedanta Studies and Research Foundation).

Vyāsadāsa (2007) (ed., trans., and comm.), Tithinirṇaya [Jagadguru Śrī Madhvācārya Tithi-
gaṇitopadeśa] (Śrī Sode Vādirāja Maṭha, Udupi: Śrī Vādirāja Sevā Saṅgha).

SECONDARY LITERATURE

Dasgupta, S. (1949), A History of Indian Philosophy, iv, 5 vols (London: The Syndics of the
Cambridge University Press), ARK: ark:/13960/s2xgp00p9wj.

Kolachana, Aditya, Mahesh, K., Montelle, Clemency, and Ramasubramanian, K. (2018),
“Determination of Ascensional Difference in the Lagnaprakaraṇa,” Indian Journal of
History of Science, 53/3: 302–16. DOI: 10.16943/ijhs/2018/v53i3/49462.

Kolachana, Aditya, Mahesh, K., and Ramasubramanian, K. (2018), “Mādhava’s Multi-
Pronged Approach for Obtaining the prāṇakalāntara,” Indian Journal of History of Sci-
ence, 53/1: 1–15. DOI: 10.16943/ijhs/2018/v53i1/49360.

Monier-Williams, Sir Monier (1986), Etymologically and Philologically Arranged with Special
Reference to Cognate Indo-European languages (New Delhi: Motilal Banarsidass).

Pai, Venketeswara R., and Sriram, M. S. (2023), “Use of the Concept of Derivative in the
Computation of vyatīpāta in Two Kerala Texts,” Indian Journal of History of Science, 58:
157–70. DOI: 10.1007/s43539-023-00090-4.

Rāmanāthācārya, Śatāvadhānī Udupi (1996), “A Rare Commentary of Tithinirṇaya,” in
Tatvavāda (Jan.), 37–8.

Rao, S. Balachandra (2000), Indian Astronomy [An Introduction] (1st edn., 3-5-819 Hyder-
guda, Hyderabad 500029: Universities Press (India) Limited).

Sharma, B. N. K. (1981), History of the Dvaita School of Vedānta and its Literature (2nd edn.,
Head Office: 41-U.A., Bungalow Road, Delhi - 110007: Motilal Banarsidass, Indolo-
gical Publishers & Booksellers).

HISTORY OF SCIENCE IN SOUTH ASIA 13 (2025) 50–152

https://n2t.net/ark:/13960/s2xgp00p9wj
https://doi.org/10.16943/ijhs/2018/v53i3/49462
https://doi.org/10.16943/ijhs/2018/v53i1/49360
https://doi.org/10.1007/s43539-023-00090-4


152 TITHINIRṆAYA: A CALENDRICAL TEXT

Viṣṇudāsa, Nāgendrācārya (2014), Mādhvasāhityakke Bannañje Govindācārya rinda sanda
koḍugegaḷu, āda apacāragalu (1st edn., Vyāsavijñānapīṭham, Oct.).

Vyāsanakere, Prabhañjanācārya (2004), Śrī Madhvācārya’s Kālanirṇaya [Shedding new
light on Śrī Madhvācārya’s time period] (Pājaka, 67, Hanumantanagara, Bengaluru
- 560019: Aitareya Prakāśana Vyāsanakere, Śrī Vyāsa Madhva Saṃśodhana
Pratiṣṭhānada Prakāśana Vibhāga).

Yelluru, Nagakiran, and Kolachana, Aditya (2023), “Geometry of prāṇakalāntara in the
Lagnaprakaraṇa,” Indian Journal of History of Science, 58: 171–80. DOI: 10.1007/s43539
-023-00097-x.

HISTORY OF SCIENCE IN SOUTH ASIA 13 (2025) 50–152

https://doi.org/10.1007/s43539-023-00097-x
https://doi.org/10.1007/s43539-023-00097-x


Please write to ⟨wujastyk@ualberta.ca⟩ to file bugs/problem reports, feature requests and to get involved.
The History of Science in South Asia • Department of History and Classics, 2–81 HM Tory Building, University
of Alberta, Edmonton, AB, T6G 2H4, Canada.

mailto:wujastyk@ualberta.ca
http://hssa-journal.org

	Introduction
	Prior publications and availability of manuscripts of Tithinirṇaya and its commentary
	Date of composition
	Authorship
	Contents of the text
	Overview of the procedure to find tithi
	Methodology and Conventions
	Translation
	Explanation
	Symbols
	Projections employed in figures


	Invocation
	Explanation
	Purpose of the work
	Source text upon which the Tithinirṇaya is based


	Mean longitude of the Sun at mean sunrise at Laṅkā
	Explanation

	Mean longitude of the Moon at mean sunrise at Laṅkā
	Explanation
	Correcting the mean rate of motion of the Moon
	Correcting the dhruva of the Moon at kalyādi


	Mean longitude of the Moon's apogee at mean sunrise at Laṅkā
	Explanation
	Correcting the mean motion of Moon's apogee
	Correcting the dhruva of Moon's apogee at kalyādi


	Deśāntara correction: to obtain mean longitudes at mean sunrise at the observer's meridian
	Explanation

	Sun's apogee and bhujāntara correction: to obtain mean longitudes at true sunrise at the observer's meridian
	Explanation
	The bhujāntara correction applied after manda correction
	The bhujāntara correction applied before manda correction
	Sign of the bhujāntara correction
	Approximation of true sunrise
	Anomalies in the interpretation of the sequence of bhujāntara and manda corrections


	Rsine values of 24 arcs
	Interpolation formula for obtaining the desired Rsine
	Explanation

	Quadrants of Ecliptic and bhuja
	Explanation

	Manda correction: to obtain true longitudes at true sunrise at the observer's meridian
	Explanation

	Trepidation of the Equinox
	Explanation

	Udayāntara correction: accounting the obliquity of the ecliptic
	Caradala correction: for an observer's latitude of 12.78
	Explanation
	Significance of cara
	Latitude for which cara is computed in Tithinirṇaya
	Rationale for the caradala correction
	Sign of the caradala correction
	Caradala correction for the Sun and Moon
	True rate of motion of the planet


	Elapsed tithi and the elapsed time in the current tithi
	Explanation

	Determining viddhaikādaśī 
	Explanation

	Fasting days of Viṣṇupañcaka-vrata
	Reaping the full benefits of a fast
	Saṅkoca-dvādaśī or Sādhana-dvādaśī
	Discussion
	Glossary

